IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v150y2020ics0167947320300979.html
   My bibliography  Save this article

Semiparametric modeling of time-varying activation and connectivity in task-based fMRI data

Author

Listed:
  • Park, Jun Young
  • Polzehl, Joerg
  • Chatterjee, Snigdhansu
  • Brechmann, André
  • Fiecas, Mark

Abstract

In functional magnetic resonance imaging (fMRI), there is a rise in evidence that time-varying functional connectivity, or dynamic functional connectivity (dFC), which measures changes in the synchronization of brain activity, provides additional information on brain networks not captured by time-invariant (i.e., static) functional connectivity. While there have been many developments for statistical models of dFC in resting-state fMRI, there remains a gap in the literature on how to simultaneously model both dFC and time-varying activation when the study participants are undergoing experimental tasks designed to probe at a cognitive process of interest. A method is proposed to estimate dFC between two regions of interest (ROIs) in task-based fMRI where the activation effects are also allowed to vary over time. The proposed method, called TVAAC (time-varying activation and connectivity), uses penalized splines to model both time-varying activation effects and time-varying functional connectivity and uses the bootstrap for statistical inference. Simulation studies show that TVAAC can estimate both static and time-varying activation and functional connectivity, while ignoring time-varying activation effects would lead to poor estimation of dFC. An empirical illustration is provided by applying TVAAC to analyze two subjects from an event-related fMRI learning experiment.

Suggested Citation

  • Park, Jun Young & Polzehl, Joerg & Chatterjee, Snigdhansu & Brechmann, André & Fiecas, Mark, 2020. "Semiparametric modeling of time-varying activation and connectivity in task-based fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300979
    DOI: 10.1016/j.csda.2020.107006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300979
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    2. Wiktor Olszowy & John Aston & Catarina Rua & Guy B. Williams, 2019. "Accurate autocorrelation modeling substantially improves fMRI reliability," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    4. Wiktor Olszowy & John Aston & Catarina Rua & Guy B. Williams, 2019. "Publisher Correction: Accurate autocorrelation modeling substantially improves fMRI reliability," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    5. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    6. Welvaert, Marijke & Durnez, Joke & Moerkerke, Beatrijs & Berdoolaege, Geert & Rosseel, Yves, 2011. "neuRosim: An R Package for Generating fMRI Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 44(i10).
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    8. Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
    9. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    2. Lauren N. Berry & Nathaniel E. Helwig, 2021. "Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines," Stats, MDPI, vol. 4(3), pages 1-24, September.
    3. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    5. Reiss Philip T. & Huang Lei, 2012. "Smoothness Selection for Penalized Quantile Regression Splines," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-27, May.
    6. Kauermann Goeran & Krivobokova Tatyana & Semmler Willi, 2011. "Filtering Time Series with Penalized Splines," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-28, March.
    7. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    8. Anusha, "undated". "Evaluating reliability of some symmetric and asymmetric univariate filters," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-030, Indira Gandhi Institute of Development Research, Mumbai, India.
    9. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    10. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    11. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.
    12. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    13. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    14. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    15. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    16. Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
    17. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    19. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.
    20. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.