IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09230-w.html
   My bibliography  Save this article

Accurate autocorrelation modeling substantially improves fMRI reliability

Author

Listed:
  • Wiktor Olszowy

    (University of Cambridge
    University of Lausanne)

  • John Aston

    (University of Cambridge)

  • Catarina Rua

    (University of Cambridge)

  • Guy B. Williams

    (University of Cambridge)

Abstract

Given the recent controversies in some neuroimaging statistical methods, we compare the most frequently used functional Magnetic Resonance Imaging (fMRI) analysis packages: AFNI, FSL and SPM, with regard to temporal autocorrelation modeling. This process, sometimes known as pre-whitening, is conducted in virtually all task fMRI studies. Here, we employ eleven datasets containing 980 scans corresponding to different fMRI protocols and subject populations. We found that autocorrelation modeling in AFNI, although imperfect, performed much better than the autocorrelation modeling of FSL and SPM. The presence of residual autocorrelated noise in FSL and SPM leads to heavily confounded first level results, particularly for low-frequency experimental designs. SPM’s alternative pre-whitening method, FAST, performed better than SPM’s default. The reliability of task fMRI studies could be improved with more accurate autocorrelation modeling. We recommend that fMRI analysis packages provide diagnostic plots to make users aware of any pre-whitening problems.

Suggested Citation

  • Wiktor Olszowy & John Aston & Catarina Rua & Guy B. Williams, 2019. "Accurate autocorrelation modeling substantially improves fMRI reliability," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09230-w
    DOI: 10.1038/s41467-019-09230-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09230-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09230-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Jun Young & Polzehl, Joerg & Chatterjee, Snigdhansu & Brechmann, André & Fiecas, Mark, 2020. "Semiparametric modeling of time-varying activation and connectivity in task-based fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    2. Bingkai Wang & Xi Luo & Yi Zhao & Brian Caffo, 2021. "Semiparametric partial common principal component analysis for covariance matrices," Biometrics, The International Biometric Society, vol. 77(4), pages 1175-1186, December.
    3. Annika Garlichs & Helen Blank, 2024. "Prediction error processing and sharpening of expected information across the face-processing hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Zachary F. Fisher & Jonathan Parsons & Kathleen M. Gates & Joseph B. Hopfinger, 2023. "Blind Subgrouping of Task-based fMRI," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 434-455, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09230-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.