Two-step estimation of time-varying additive model for locally stationary time series
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2018.08.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oliver Linton & E. Mammen & J. Nielsen, 1997.
"The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions,"
Cowles Foundation Discussion Papers
1160, Cowles Foundation for Research in Economics, Yale University.
- Oliver Linton & Enno Mammen & N Nielsen, 2000. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm under Weak Conditions," STICERD - Econometrics Paper Series 386, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Mammen, Enno & Linton, Oliver & Nielsen, J, 2000. "The existence and asymptotic properties of a backfitting projection algorithm under weak conditions," LSE Research Online Documents on Economics 2315, London School of Economics and Political Science, LSE Library.
- Linton, Oliver & Mammen, E. & Nielsen, J., 1999. "The existence and asymptotic properties of a backfitting projection algorithm under weak conditions," LSE Research Online Documents on Economics 300, London School of Economics and Political Science, LSE Library.
- Rong Liu & Lijian Yang & Wolfgang K. Härdle, 2013.
"Oracally Efficient Two-Step Estimation of Generalized Additive Model,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 619-631, June.
- Liu, Rong & Yang, Lijian & Härdle, Wolfgang Karl, 2011. "Oracally efficient two-step estimation of generalized additive model," SFB 649 Discussion Papers 2011-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Song, Qiongxia & Yang, Lijian, 2010. "Oracally efficient spline smoothing of nonlinear additive autoregression models with simultaneous confidence band," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2008-2025, October.
- Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
- Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
- Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
- Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
- Liu, Rong & Yang, Lijian, 2010. "Spline-Backfitted Kernel Smoothing Of Additive Coefficient Model," Econometric Theory, Cambridge University Press, vol. 26(1), pages 29-59, February.
- Zhou Zhou & Wei Biao Wu, 2010. "Simultaneous inference of linear models with time varying coefficients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 513-531, September.
- Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
- Jianhua Z. Huang & Lijian Yang, 2004. "Identification of non‐linear additive autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 463-477, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tadao Hoshino, 2021. "Estimating a Continuous Treatment Model with Spillovers: A Control Function Approach," Papers 2112.15114, arXiv.org, revised Jan 2023.
- Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Čížek, Pavel & Koo, Chao Hui, 2021.
"Jump-preserving varying-coefficient models for nonlinear time series,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Discussion Paper 2017-017, Tilburg University, Center for Economic Research.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Other publications TiSEM c849e96f-3ad1-461e-96c6-f, Tilburg University, School of Economics and Management.
- Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
- Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
- Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
- Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
- Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
- Patrick, Joshua D. & Harvill, Jane L. & Hansen, Clifford W., 2016. "A semiparametric spatio-temporal model for solar irradiance data," Renewable Energy, Elsevier, vol. 87(P1), pages 15-30.
- repec:wyi:journl:002096 is not listed on IDEAS
- Xingcai Zhou & Guang Yang & Yu Xiang, 2022. "Quantile-Wavelet Nonparametric Estimates for Time-Varying Coefficient Models," Mathematics, MDPI, vol. 10(13), pages 1-15, July.
- Miao Yang & Lan Xue & Lijian Yang, 2016. "Variable selection for additive model via cumulative ratios of empirical strengths total," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 595-616, September.
- Lena Boneva (Körber) & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers 02/13, Institute for Fiscal Studies.
- Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
- Dong, Chaohua & Linton, Oliver, 2018.
"Additive nonparametric models with time variable and both stationary and nonstationary regressors,"
Journal of Econometrics, Elsevier, vol. 207(1), pages 212-236.
- Chaohua Dong & Oliver Linton, 2017. "Additive nonparametric models with time variable and both stationary and nonstationary regressions," CeMMAP working papers CWP59/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015.
"A semiparametric model for heterogeneous panel data with fixed effects,"
Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
- Lena Boneva (Körber) & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers CWP02/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Li, Degui & Phillips, Peter C.B. & Gao, Jiti, 2020.
"Kernel-based Inference in Time-Varying Coefficient Cointegrating Regression,"
Journal of Econometrics, Elsevier, vol. 215(2), pages 607-632.
- Degui Li & Peter C.B. Phillips & Jiti Gao, 2017. "Kernel-Based Inference In Time-Varying Coefficient Cointegrating Regression," Cowles Foundation Discussion Papers 2109, Cowles Foundation for Research in Economics, Yale University.
- Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Estimation of Grouped Time-Varying Network Vector Autoregression Models," Papers 2303.10117, arXiv.org, revised Mar 2024.
- Liang, Zhongwen & Li, Qi, 2012. "Functional coefficient regression models with time trend," Journal of Econometrics, Elsevier, vol. 170(1), pages 15-31.
- Friedrich, Marina & Lin, Yicong, 2024. "Sieve bootstrap inference for linear time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 239(1).
- Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
- Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
More about this item
Keywords
Time-varying additive model; Locally stationary process; α-mixing; Local linear estimator; Tensor product;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:130:y:2019:i:c:p:94-110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.