IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v130y2019icp94-110.html
   My bibliography  Save this article

Two-step estimation of time-varying additive model for locally stationary time series

Author

Listed:
  • Hu, Lixia
  • Huang, Tao
  • You, Jinhong

Abstract

In the analysis of locally stationary process, a time-varying additive model (tvAM) can effectively capture the dynamic feature of regression function. In combination with the strengths of tensor product of B-spline smoothing and local linear smoothing method, a two-step estimation method is proposed. It is shown that the proposed estimator is uniformly consistent and asymptotically oracle efficient as if the other component functions were known. Furthermore, a nonparametric bootstrap procedure is proposed to test the time-varying property of regression function. Simulation studies investigate the finite-sample performance of the proposed methods and validate the asymptotic theory. An environmental dataset illustrating the proposed method is also considered.

Suggested Citation

  • Hu, Lixia & Huang, Tao & You, Jinhong, 2019. "Two-step estimation of time-varying additive model for locally stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 94-110.
  • Handle: RePEc:eee:csdana:v:130:y:2019:i:c:p:94-110
    DOI: 10.1016/j.csda.2018.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318302068
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    2. Liu, Rong & Yang, Lijian, 2010. "Spline-Backfitted Kernel Smoothing Of Additive Coefficient Model," Econometric Theory, Cambridge University Press, vol. 26(1), pages 29-59, February.
    3. Zhou Zhou & Wei Biao Wu, 2010. "Simultaneous inference of linear models with time varying coefficients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 513-531, September.
    4. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    5. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    6. Rong Liu & Lijian Yang & Wolfgang K. Härdle, 2013. "Oracally Efficient Two-Step Estimation of Generalized Additive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 619-631, June.
    7. Song, Qiongxia & Yang, Lijian, 2010. "Oracally efficient spline smoothing of nonlinear additive autoregression models with simultaneous confidence band," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2008-2025, October.
    8. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    9. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    10. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    11. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Jianhua Z. Huang & Lijian Yang, 2004. "Identification of non‐linear additive autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 463-477, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.
    2. Tadao Hoshino, 2021. "Estimating a Continuous Treatment Model with Spillovers: A Control Function Approach," Papers 2112.15114, arXiv.org, revised Jan 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    4. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    5. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
    7. Liang, Zhongwen & Li, Qi, 2012. "Functional coefficient regression models with time trend," Journal of Econometrics, Elsevier, vol. 170(1), pages 15-31.
    8. Friedrich, Marina & Lin, Yicong, 2024. "Sieve bootstrap inference for linear time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 239(1).
    9. Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
    10. Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
    11. Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
    12. Patrick, Joshua D. & Harvill, Jane L. & Hansen, Clifford W., 2016. "A semiparametric spatio-temporal model for solar irradiance data," Renewable Energy, Elsevier, vol. 87(P1), pages 15-30.
    13. Rong Liu & Yichuan Zhao, 2021. "Empirical likelihood inference for generalized additive partially linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 569-585, September.
    14. repec:wyi:journl:002096 is not listed on IDEAS
    15. Xingcai Zhou & Guang Yang & Yu Xiang, 2022. "Quantile-Wavelet Nonparametric Estimates for Time-Varying Coefficient Models," Mathematics, MDPI, vol. 10(13), pages 1-15, July.
    16. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    17. Miao Yang & Lan Xue & Lijian Yang, 2016. "Variable selection for additive model via cumulative ratios of empirical strengths total," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 595-616, September.
    18. Shuzhuan Zheng & Rong Liu & Lijian Yang & Wolfgang K. Härdle, 2016. "Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 607-626, December.
    19. Lena Boneva (Körber) & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers 02/13, Institute for Fiscal Studies.
    20. Rui Li & Yuanyuan Zhang, 2021. "Two-stage estimation and simultaneous confidence band in partially nonlinear additive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1109-1140, November.
    21. Tu, Yundong & Wang, Ying, 2022. "Spurious functional-coefficient regression models and robust inference with marginal integration," Journal of Econometrics, Elsevier, vol. 229(2), pages 396-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:130:y:2019:i:c:p:94-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.