Identifying outliers using multiple kernel canonical correlation analysis with application to imaging genetics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2018.03.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
- Parkhomenko Elena & Tritchler David & Beyene Joseph, 2009. "Sparse Canonical Correlation Analysis with Application to Genomic Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, January.
- Kenji Fukumizu & Chenlei Leng, 2014. "Gradient-Based Kernel Dimension Reduction for Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 359-370, March.
- Filzmoser, Peter & Maronna, Ricardo & Werner, Mark, 2008. "Outlier identification in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1694-1711, January.
- Mario Romanazzi, 1992. "Influence in canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(2), pages 237-259, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Melissa G Naylor & Xihong Lin & Scott T Weiss & Benjamin A Raby & Christoph Lange, 2010. "Using Canonical Correlation Analysis to Discover Genetic Regulatory Variants," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
- G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
- Ronglai Shen & Qianxing Mo & Nikolaus Schultz & Venkatraman E Seshan & Adam B Olshen & Jason Huse & Marc Ladanyi & Chris Sander, 2012. "Integrative Subtype Discovery in Glioblastoma Using iCluster," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
- Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.
- Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Alberto Roverato & F. Marta L. Di Lascio, 2011. "Wilks' Λ Dissimilarity Measures for Gene Clustering: An Approach Based on the Identification of Transcription Modules," Biometrics, The International Biometric Society, vol. 67(4), pages 1236-1248, December.
- Jose A Seoane & Colin Campbell & Ian N M Day & Juan P Casas & Tom R Gaunt, 2014. "Canonical Correlation Analysis for Gene-Based Pleiotropy Discovery," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.
- Heinrich Fritz & Peter Filzmoser & Christophe Croux, 2012.
"A comparison of algorithms for the multivariate L 1 -median,"
Computational Statistics, Springer, vol. 27(3), pages 393-410, September.
- Fritz, H. & Filzmoser, P. & Croux, C., 2010. "A Comparison of Algorithms for the Multivariate L1-Median," Discussion Paper 2010-106, Tilburg University, Center for Economic Research.
- Thomas Triebs & Subal C. Kumbhakar, 2012. "Management Practice in Production," ifo Working Paper Series 129, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.
- Feng, Qing & Jiang, Meilei & Hannig, Jan & Marron, J.S., 2018. "Angle-based joint and individual variation explained," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 241-265.
- Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2013. "Robust distances for outlier-free goodness-of-fit testing," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 29-45.
- Thomas Ortner & Peter Filzmoser & Maia Rohm & Sarka Brodinova & Christian Breiteneder, 2021. "Local projections for high-dimensional outlier detection," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 189-206, August.
- David E. Tyler & Frank Critchley & Lutz Dümbgen & Hannu Oja, 2009. "Invariant co‐ordinate selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 549-592, June.
- Yuping Zhang & Zhengqing Ouyang, 2018. "Joint principal trend analysis for longitudinal high†dimensional data," Biometrics, The International Biometric Society, vol. 74(2), pages 430-438, June.
- Coleman Jacob & Replogle Joseph & Chandler Gabriel & Hardin Johanna, 2016. "Resistant multiple sparse canonical correlation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(2), pages 123-138, April.
- Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
- Zhang Fan & Miecznikowski Jeffrey C. & Tritchler David L., 2020. "Identification of supervised and sparse functional genomic pathways," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(1), pages 1-27, February.
- Strobl Eric V. & Visweswaran Shyam, 2016. "Markov Boundary Discovery with Ridge Regularized Linear Models," Journal of Causal Inference, De Gruyter, vol. 4(1), pages 31-48, March.
- Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
More about this item
Keywords
Multiple kernel CCA; Influence function; Outlier detection; Multimodal datasets; Imaging genetics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:70-85. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.