IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v65y2013icp29-45.html
   My bibliography  Save this article

Robust distances for outlier-free goodness-of-fit testing

Author

Listed:
  • Cerioli, Andrea
  • Farcomeni, Alessio
  • Riani, Marco

Abstract

Robust distances are mainly used for the purpose of detecting multivariate outliers. The precise definition of cut-off values for formal outlier testing assumes that the “good” part of the data comes from a multivariate normal population. Robust distances also provide valuable information on the units not declared to be outliers and, under mild regularity conditions, they can be used to test the postulated hypothesis of multivariate normality of the uncontaminated data. This approach is not influenced by nasty outliers and thus provides a robust alternative to classical tests for multivariate normality relying on Mahalanobis distances. One major advantage of the suggested procedure is that it takes into account the effect induced by trimming of outliers in several ways. First, it is shown that stochastic trimming is an important ingredient for the purpose of obtaining a reliable estimate of the number of “good” observations. Second, trimming must be allowed for in the empirical distribution of the robust distances when comparing them to their nominal distribution. Finally, alternative trimming rules can be exploited by controlling alternative error rates, such as the False Discovery Rate. Numerical evidence based on simulated and real data shows that the proposed method performs well in a variety of situations of practical interest. It is thus a valuable companion to the existing outlier detection tools for the robust analysis of complex multivariate data structures.

Suggested Citation

  • Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2013. "Robust distances for outlier-free goodness-of-fit testing," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 29-45.
  • Handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:29-45
    DOI: 10.1016/j.csda.2012.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200134X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    2. Alvarez-Esteban, Pedro C. & del Barrio, Eustasio & Cuesta-Albertos, Juan A. & Matrán, Carlos, 2010. "Assessing when a sample is mostly normal," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2914-2925, December.
    3. Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.
    4. Filzmoser, Peter & Maronna, Ricardo & Werner, Mark, 2008. "Outlier identification in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1694-1711, January.
    5. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    6. Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
    7. Garcia-Escudero, Luis Angel & Gordaliza, Alfonso, 2005. "Generalized Radius Processes for Elliptically Contoured Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1036-1045, September.
    8. Van Aelst, Stefan & Willems, Gert, 2011. "Robust and Efficient One-Way MANOVA Tests," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 706-718.
    9. Croux, Christophe & Haesbroeck, Gentiane, 1999. "Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 161-190, November.
    10. Cerioli, Andrea, 2010. "Multivariate Outlier Detection With High-Breakdown Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 147-156.
    11. Hubert, Mia & Van Driessen, Katrien, 2004. "Fast and robust discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 301-320, March.
    12. Beirlant, J. & Mason, D. M. & Vynckier, C., 1999. "Goodness-of-fit analysis for multivariate normality based on generalized quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 119-142, April.
    13. Andreas Alfons & Wolfgang Baaske & Peter Filzmoser & Wolfgang Mader & Roland Wieser, 2011. "Robust variable selection with application to quality of life research," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 65-82, March.
    14. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Farcomeni & Luca Greco, 2015. "S-estimation of hidden Markov models," Computational Statistics, Springer, vol. 30(1), pages 57-80, March.
    2. Måns Thulin, 2014. "Tests for multivariate normality based on canonical correlations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 189-208, June.
    3. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    4. Pedro Galeano & Daniel Peña, 2019. "Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 289-329, June.
    5. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    6. Lourenço, V.M. & Pires, A.M., 2014. "M-regression, false discovery rates and outlier detection with application to genetic association studies," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 33-42.
    7. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    8. Peter Filzmoser & Anne Ruiz-Gazen & Christine Thomas-Agnan, 2014. "Identification of local multivariate outliers," Statistical Papers, Springer, vol. 55(1), pages 29-47, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    2. Silvia Salini & Andrea Cerioli & Fabrizio Laurini & Marco Riani, 2016. "Reliable Robust Regression Diagnostics," International Statistical Review, International Statistical Institute, vol. 84(1), pages 99-127, April.
    3. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    4. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    5. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    6. Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.
    7. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    8. Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "The power of monitoring: how to make the most of a contaminated multivariate sample," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 559-587, December.
    9. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    10. Anthony C. Atkinson & Andrea Cerioli & Marco Riani, 2016. "Discussion of ‘Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models’ by Johansen and Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 349-352, June.
    11. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    12. Thomas Ortner & Peter Filzmoser & Maia Rohm & Sarka Brodinova & Christian Breiteneder, 2021. "Local projections for high-dimensional outlier detection," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 189-206, August.
    13. Meltem Ekiz & O.Ufuk Ekiz, 2017. "Outlier detection with Mahalanobis square distance: incorporating small sample correction factor," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2444-2457, October.
    14. Dürre, Alexander & Vogel, Daniel & Fried, Roland, 2015. "Spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 89-105.
    15. Valentin Todorov & Matthias Templ & Peter Filzmoser, 2011. "Detection of multivariate outliers in business survey data with incomplete information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(1), pages 37-56, April.
    16. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    17. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    18. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    19. Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
    20. Peter Filzmoser & Anne Ruiz-Gazen & Christine Thomas-Agnan, 2014. "Identification of local multivariate outliers," Statistical Papers, Springer, vol. 55(1), pages 29-47, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:29-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.