Resistant multiple sparse canonical correlation
Author
Abstract
Suggested Citation
DOI: 10.1515/sagmb-2014-0081
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Witten Daniela M & Tibshirani Robert J., 2009. "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-29, June.
- Parkhomenko Elena & Tritchler David & Beyene Joseph, 2009. "Sparse Canonical Correlation Analysis with Application to Genomic Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, January.
- Catherine Dehon & Peter Filzmoser & Christophe Croux, 2000. "Robust methods for canonical correlation analysis," ULB Institutional Repository 2013/8458, ULB -- Universite Libre de Bruxelles.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Jose A Seoane & Colin Campbell & Ian N M Day & Juan P Casas & Tom R Gaunt, 2014. "Canonical Correlation Analysis for Gene-Based Pleiotropy Discovery," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.
- Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
- Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
- Ronglai Shen & Qianxing Mo & Nikolaus Schultz & Venkatraman E Seshan & Adam B Olshen & Jason Huse & Marc Ladanyi & Chris Sander, 2012. "Integrative Subtype Discovery in Glioblastoma Using iCluster," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
- Zhang Fan & Miecznikowski Jeffrey C. & Tritchler David L., 2020. "Identification of supervised and sparse functional genomic pathways," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(1), pages 1-27, February.
- Melissa G Naylor & Xihong Lin & Scott T Weiss & Benjamin A Raby & Christoph Lange, 2010. "Using Canonical Correlation Analysis to Discover Genetic Regulatory Variants," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
- Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.
- Alberto Roverato & F. Marta L. Di Lascio, 2011. "Wilks' Λ Dissimilarity Measures for Gene Clustering: An Approach Based on the Identification of Transcription Modules," Biometrics, The International Biometric Society, vol. 67(4), pages 1236-1248, December.
- Lee Woojoo & Lee Donghwan & Lee Youngjo & Pawitan Yudi, 2011. "Sparse Canonical Covariance Analysis for High-throughput Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-24, July.
- Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
- Iaci, Ross & Sriram, T.N., 2013. "Robust multivariate association and dimension reduction using density divergences," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 281-295.
- Lukáš Malec & Vladimír Janovský, 2020. "Connecting the multivariate partial least squares with canonical analysis: a path-following approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 589-609, September.
- Diptavo Dutta & Yuan He & Ashis Saha & Marios Arvanitis & Alexis Battle & Nilanjan Chatterjee, 2022. "Aggregative trans-eQTL analysis detects trait-specific target gene sets in whole blood," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Bin Li & Hyunjin Shin & Georgy Gulbekyan & Olga Pustovalova & Yuri Nikolsky & Andrew Hope & Marina Bessarabova & Matthew Schu & Elona Kolpakova-Hart & David Merberg & Andrew Dorner & William L Trepicc, 2015. "Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
- Langworthy, Benjamin W. & Stephens, Rebecca L. & Gilmore, John H. & Fine, Jason P., 2021. "Canonical correlation analysis for elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- Feng, Qing & Jiang, Meilei & Hannig, Jan & Marron, J.S., 2018. "Angle-based joint and individual variation explained," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 241-265.
- Yunfeng Zhang & Irina Gaynanova, 2022. "Joint association and classification analysis of multi‐view data," Biometrics, The International Biometric Society, vol. 78(4), pages 1614-1625, December.
- Sandra E. Safo & Eun Jeong Min & Lillian Haine, 2022. "Sparse linear discriminant analysis for multiview structured data," Biometrics, The International Biometric Society, vol. 78(2), pages 612-623, June.
- Bayarbaatar Amgalan & Hyunju Lee, 2014. "WMAXC: A Weighted Maximum Clique Method for Identifying Condition-Specific Sub-Network," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
More about this item
Keywords
Pearson correlation; shrinkage estimate; Spearman correlation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:15:y:2016:i:2:p:123-138:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.