IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i3p922-936.html
   My bibliography  Save this article

Modeling semi‐competing risks data as a longitudinal bivariate process

Author

Listed:
  • Daniel Nevo
  • Deborah Blacker
  • Eric B. Larson
  • Sebastien Haneuse

Abstract

As individuals age, death is a competing risk for Alzheimer's disease (AD) but the reverse is not the case. As such, studies of AD can be placed within the semi‐competing risks framework. Central to semi‐competing risks, and in contrast to standard competing risks , is that one can learn about the dependence structure between the two events. To‐date, however, most methods for semi‐competing risks treat dependence as a nuisance and not a potential source of new clinical knowledge. We propose a novel regression‐based framework that views the two time‐to‐event outcomes through the lens of a longitudinal bivariate process on a partition of the time scales of the two events. A key innovation of the framework is that dependence is represented in two distinct forms, local and global dependence, both of which have intuitive clinical interpretations. Estimation and inference are performed via penalized maximum likelihood, and can accommodate right censoring, left truncation, and time‐varying covariates. An important consequence of the partitioning of the time scale is that an ambiguity regarding the specific form of the likelihood contribution may arise; a strategy for sensitivity analyses regarding this issue is described. The framework is then used to investigate the role of gender and having ≥1 apolipoprotein E (APOE) ε4 allele on the joint risk of AD and death using data from the Adult Changes in Thought study.

Suggested Citation

  • Daniel Nevo & Deborah Blacker & Eric B. Larson & Sebastien Haneuse, 2022. "Modeling semi‐competing risks data as a longitudinal bivariate process," Biometrics, The International Biometric Society, vol. 78(3), pages 922-936, September.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:922-936
    DOI: 10.1111/biom.13480
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13480
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyu Ha Lee & Francesca Dominici & Deborah Schrag & Sebastien Haneuse, 2016. "Hierarchical Models for Semicompeting Risks Data With Application to Quality of End-of-Life Care for Pancreatic Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1075-1095, July.
    2. Yingxing Li & David Ruppert, 2008. "On the asymptotics of penalized splines," Biometrika, Biometrika Trust, vol. 95(2), pages 415-436.
    3. Jing Yang & Limin Peng, 2016. "A new flexible dependence measure for semi-competing risks," Biometrics, The International Biometric Society, vol. 72(3), pages 770-779, September.
    4. Ruosha Li & Limin Peng, 2015. "Quantile regression adjusting for dependent censoring from semicompeting risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 107-130, January.
    5. Jinfeng Xu & John D. Kalbfleisch & Beechoo Tai, 2010. "Statistical Analysis of Illness–Death Processes and Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 66(3), pages 716-725, September.
    6. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    7. Kyu Ha Lee & Sebastien Haneuse & Deborah Schrag & Francesca Dominici, 2015. "Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 253-273, February.
    8. Thomas R. Ten Have & Alfredo Morabia, 1999. "Mixed Effects Models with Bivariate and Univariate Association Parameters for Longitudinal Bivariate Binary Response Data," Biometrics, The International Biometric Society, vol. 55(1), pages 85-93, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    2. Harrison T. Reeder & Junwei Lu & Sebastien Haneuse, 2023. "Penalized estimation of frailty‐based illness–death models for semi‐competing risks," Biometrics, The International Biometric Society, vol. 79(3), pages 1657-1669, September.
    3. Yang Li & Hao Liu & Xiaoshen Wang & Wanzhu Tu, 2022. "Semi‐parametric time‐to‐event modelling of lengths of hospital stays," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1623-1647, November.
    4. Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.
    5. Lea Kats & Malka Gorfine, 2023. "An accelerated failure time regression model for illness–death data: A frailty approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3066-3081, December.
    6. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    7. Anne Eaton & Yifei Sun & James Neaton & Xianghua Luo, 2022. "Nonparametric estimation in an illness‐death model with component‐wise censoring," Biometrics, The International Biometric Society, vol. 78(3), pages 1168-1180, September.
    8. Peng, Mengjiao & Xiang, Liming & Wang, Shanshan, 2018. "Semiparametric regression analysis of clustered survival data with semi-competing risks," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 53-70.
    9. Yen‐Tsung Huang, 2021. "Causal mediation of semicompeting risks," Biometrics, The International Biometric Society, vol. 77(4), pages 1143-1154, December.
    10. Xifen Huang & Jinfeng Xu & Hao Guo & Jianhua Shi & Wenjie Zhao, 2022. "An MM Algorithm for the Frailty-Based Illness Death Model with Semi-Competing Risks Data," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
    11. Yen‐Tsung Huang, 2021. "Rejoinder to “Causal mediation of semicompeting risks”," Biometrics, The International Biometric Society, vol. 77(4), pages 1170-1174, December.
    12. Il Do Ha & Liming Xiang & Mengjiao Peng & Jong-Hyeon Jeong & Youngjo Lee, 2020. "Frailty modelling approaches for semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 109-133, January.
    13. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    14. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    15. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    16. Sonja Greven & Ciprian Crainiceanu, 2013. "On likelihood ratio testing for penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 387-402, October.
    17. Menggang Yu & Constantin T. Yiannoutsos, 2015. "Marginal and Conditional Distribution Estimation from Double-sampled Semi-competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 87-103, March.
    18. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    19. Lee, Wang-Sheng, 2014. "Is the BMI a Relic of the Past?," IZA Discussion Papers 8637, Institute of Labor Economics (IZA).
    20. repec:hum:wpaper:sfb649dp2017-024 is not listed on IDEAS
    21. Monica Pratesi & M. Ranalli & Nicola Salvati, 2009. "Nonparametric -quantile regression using penalised splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 287-304.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:922-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.