Cox regression analysis of dependent interval-censored failure time data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2016.04.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yi‐Hau Chen, 2010. "Semiparametric marginal regression analysis for dependent competing risks under an assumed copula," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 235-251, March.
- Rebecca A. Betensky & Dianne M. Finkelstein, 2002. "Testing for Dependence Between Failure Time and Visit Compliance with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 58-63, March.
- Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006.
"Efficient Estimation of Semiparametric Multivariate Copula Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
- Xiaohong Chen & Yanqin Fan & Victor Tsyrennifov, 2004. "Efficient Estimation of Semiparametric Multivariate Copula Models," Vanderbilt University Department of Economics Working Papers 0420, Vanderbilt University Department of Economics.
- Minggen Lu & Ying Zhang & Jian Huang, 2007. "Estimation of the mean function with panel count data using monotone polynomial splines," Biometrika, Biometrika Trust, vol. 94(3), pages 705-718.
- Anton Schick & Qiqing Yu, 2000. "Consistency of the GMLE with Mixed Case Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 45-55, March.
- Stephen W. Lagakos & Thomas A. Louis, 1988. "Use of Tumour Lethality to Interpret Tumorigenicity Experiments Lacking Cause‐Of‐Death Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(2), pages 169-179, June.
- Klara Goethals & Paul Janssen & Luc Duchateau, 2008. "Frailty models and copulas: similarities and differences," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1071-1079.
- Dianne M. Finkelstein & William B. Goggins & David A. Schoenfeld, 2002. "Analysis of Failure Time Data with Dependent Interval Censoring," Biometrics, The International Biometric Society, vol. 58(2), pages 298-304, June.
- Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xifen Huang & Jinfeng Xu, 2022. "Subgroup Identification and Regression Analysis of Clustered and Heterogeneous Interval-Censored Data," Mathematics, MDPI, vol. 10(6), pages 1-11, March.
- Fábio Prataviera & Elizabeth M. Hashimoto & Edwin M. M. Ortega & Taciana V. Savian & Gauss M. Cordeiro, 2023. "Interval-Censored Regression with Non-Proportional Hazards with Applications," Stats, MDPI, vol. 6(2), pages 1-14, May.
- Yeqian Liu & Tao Hu & Jianguo Sun, 2017. "Regression analysis of current status data in the presence of a cured subgroup and dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 626-650, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Xuerong & Hu, Tao & Sun, Jianguo, 2017. "Sieve maximum likelihood estimation for the proportional hazards model under informative censoring," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 224-234.
- Pantazis, Nikos & Kenward, Michael G. & Touloumi, Giota, 2013. "Performance of parametric survival models under non-random interval censoring: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 16-30.
- Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
- Mengyue Zhang & Shishun Zhao & Tao Hu & Da Xu & Jianguo Sun, 2023. "Regression Analysis of Dependent Current Status Data with Left Truncation," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
- Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
- Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
- Minggen Lu, 2015. "Spline estimation of generalised monotonic regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 19-39, March.
- Yuan Wu & Christina D. Chambers & Ronghui Xu, 2019. "Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 507-528, July.
- Cheng, Guang & Zhou, Lan & Chen, Xiaohong & Huang, Jianhua Z., 2014. "Efficient estimation of semiparametric copula models for bivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 330-344.
- Liu, Xiaoyu & Xiang, Liming, 2021. "Generalized accelerated hazards mixture cure models with interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Minggen Lu & Dana Loomis, 2013. "Spline-based semiparametric estimation of partially linear Poisson regression with single-index models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 905-922, December.
- Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
- Agbeyegbe, Terence D., 2015.
"An inverted U-shaped crude oil price return-implied volatility relationship,"
Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
- Terence D. Agbeyegbe, 2015. "An inverted U‐shaped crude oil price return‐implied volatility relationship," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 28-45, November.
- Giovanni Compiani & Philip Haile & Marcelo Sant’Anna, 2020.
"Common Values, Unobserved Heterogeneity, and Endogenous Entry in US Offshore Oil Lease Auctions,"
Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3872-3912.
- Giovanni Compiani & Philip Haile & Marcelo Sant'Anna, 2018. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in U.S. Offshore Oil Lease Auction," NBER Working Papers 24795, National Bureau of Economic Research, Inc.
- Giovanni Compiani & Phil Haile & Marcelo Sant'Anna, 2018. "Common values, unobserved heterogeneity, and endogenous entry in U.S. offshore oil lease auctions," CeMMAP working papers CWP37/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Giovanni Compiani & Philip A. Haile & Marcelo Sant'Anna, 2018. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in U.S. Offshore Oil Lease Auctions," Cowles Foundation Discussion Papers 2137R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2019.
- Giovanni Compiani & Philip A. Haile & Marcelo Sant'Anna, 2018. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in U.S. Offshore Oil Lease Auctions," Cowles Foundation Discussion Papers 2137, Cowles Foundation for Research in Economics, Yale University.
- Jeffrey Racine, 2015.
"Mixed data kernel copulas,"
Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
- Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Working Paper series 46_13, Rimini Centre for Economic Analysis.
- Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Department of Economics Working Papers 2013-12, McMaster University.
- repec:hum:wpaper:sfb649dp2006-075 is not listed on IDEAS
- Chu, Yu-Ming & Xia, Wei-Feng & Zhang, Xiao-Hui, 2012. "The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 412-421.
- Qiqing Yu & George Wong & Linxiong Li, 2001. "Asymptotic Properties of Self-Consistent Estimators with Mixed Interval-Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 469-486, September.
- Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
- Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
More about this item
Keywords
Copula model; Cox model; Dependent interval-censoring; Efficient semiparametric estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:79-90. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.