IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v58y2002i2p298-304.html
   My bibliography  Save this article

Analysis of Failure Time Data with Dependent Interval Censoring

Author

Listed:
  • Dianne M. Finkelstein
  • William B. Goggins
  • David A. Schoenfeld

Abstract

No abstract is available for this item.

Suggested Citation

  • Dianne M. Finkelstein & William B. Goggins & David A. Schoenfeld, 2002. "Analysis of Failure Time Data with Dependent Interval Censoring," Biometrics, The International Biometric Society, vol. 58(2), pages 298-304, June.
  • Handle: RePEc:bla:biomet:v:58:y:2002:i:2:p:298-304
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2002.00298.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rebecca A. Betensky & Dianne M. Finkelstein, 2002. "Testing for Dependence Between Failure Time and Visit Compliance with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 58-63, March.
    2. Richard Peto, 1973. "Experimental Survival Curves for Interval‐Censored Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(1), pages 86-91, March.
    3. William B. Goggins & Dianne M. Finkelstein & Alan M. Zaslavsky, 1999. "Applying the Cox Proportional Hazards Model When the Change Time of a Binary Time-Varying Covariate Is Interval Censored," Biometrics, The International Biometric Society, vol. 55(2), pages 445-451, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuying & Wang, Chunjie & Wang, Peijie & Sun, Jianguo, 2020. "Estimation of the additive hazards model with case K interval-censored failure time data in the presence of informative censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Ma, Ling & Hu, Tao & Sun, Jianguo, 2016. "Cox regression analysis of dependent interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 79-90.
    3. Pantazis, Nikos & Kenward, Michael G. & Touloumi, Giota, 2013. "Performance of parametric survival models under non-random interval censoring: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 16-30.
    4. Wittkowski, Knut M., 2003. "Novel Methods for Multivariate Ordinal Data applied to Genetic Diplotypes, Genomic Pathways, Risk Profiles, and Pattern Similarity," MPRA Paper 4570, University Library of Munich, Germany.
    5. Rebecca A. Betensky & Dianne M. Finkelstein, 2002. "Testing for Dependence Between Failure Time and Visit Compliance with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 58-63, March.
    6. Dianne M. Finkelstein & Rui Wang & Linda H. Ficociello & David A. Schoenfeld, 2010. "A Score Test for Association of a Longitudinal Marker and an Event with Missing Data," Biometrics, The International Biometric Society, vol. 66(3), pages 726-732, September.
    7. Angel G. Angelov & Magnus Ekström, 2017. "Nonparametric estimation for self-selected interval data collected through a two-stage approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 377-399, May.
    8. Angel G. Angelov & Magnus Ekström, 2019. "Maximum likelihood estimation for survey data with informative interval censoring," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 217-236, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard J. Cook & Leilei Zeng & Ker-Ai Lee, 2008. "A Multistate Model for Bivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1100-1109, December.
    2. Faustino Prieto & Jos'e Mar'ia Sarabia & Enrique Calder'in-Ojeda, 2020. "The risk of death in newborn businesses during the first years in market," Papers 2011.11776, arXiv.org.
    3. Pantazis, Nikos & Kenward, Michael G. & Touloumi, Giota, 2013. "Performance of parametric survival models under non-random interval censoring: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 16-30.
    4. repec:jss:jstsof:36:i02 is not listed on IDEAS
    5. Meei Pyng Ng, 2002. "A Modification of Peto's Nonparametric Estimation of Survival Curves for Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(2), pages 439-442, June.
    6. Rebecca A. Betensky & Dianne M. Finkelstein, 2002. "Testing for Dependence Between Failure Time and Visit Compliance with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 58-63, March.
    7. Wang, Tong & Jin, Hailong & Sieverding, Heidi & Kumar, Sandeep & Miao, Yuxin & Rao, Xudong & Obembe, Oladipo & Mirzakhani Nafchi, Ali & Redfearn, Daren & Cheye, Stephen, 2023. "Understanding farmer views of precision agriculture profitability in the U.S. Midwest," Ecological Economics, Elsevier, vol. 213(C).
    8. Anne Eaton & Yifei Sun & James Neaton & Xianghua Luo, 2022. "Nonparametric estimation in an illness‐death model with component‐wise censoring," Biometrics, The International Biometric Society, vol. 78(3), pages 1168-1180, September.
    9. Dianne M. Finkelstein & Rui Wang & Linda H. Ficociello & David A. Schoenfeld, 2010. "A Score Test for Association of a Longitudinal Marker and an Event with Missing Data," Biometrics, The International Biometric Society, vol. 66(3), pages 726-732, September.
    10. Chen, Baojiang & Zhou, Xiao-Hua, 2013. "A correlated random effects model for non-homogeneous Markov processes with nonignorable missingness," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 1-13.
    11. Ma, Ling & Hu, Tao & Sun, Jianguo, 2016. "Cox regression analysis of dependent interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 79-90.
    12. Chiu-Hsieh Hsu & Yisheng Li & Qi Long & Qiuhong Zhao & Peter Lance, 2011. "Estimation of Recurrence of Colorectal Adenomas with Dependent Censoring Using Weighted Logistic Regression," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    13. Enrico A. Colosimo & Liciana V. A. S. Chalita & Clarice G. B. Demétrio, 2000. "Tests of Proportional Hazards and Proportional Odds Models for Grouped Survival Data," Biometrics, The International Biometric Society, vol. 56(4), pages 1233-1240, December.
    14. Doug Morrison & Oliver Laeyendecker & Ron Brookmeyer, 2022. "Regression with interval‐censored covariates: Application to cross‐sectional incidence estimation," Biometrics, The International Biometric Society, vol. 78(3), pages 908-921, September.
    15. Kenichi Hayashi & Yasutaka Shimizu, 2018. "Estimation of a Concordance Probability for Doubly Censored Time-to-Event Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 546-567, December.
    16. William B. Goggins & Dianne M. Finkelstein, 2000. "A Proportional Hazards Model for Multivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 56(3), pages 940-943, September.
    17. C. P. Farrington, 2000. "Residuals for Proportional Hazards Models with Interval-Censored Survival Data," Biometrics, The International Biometric Society, vol. 56(2), pages 473-482, June.
    18. Peter Bacchetti & Christopher Quale, 2002. "Generalized Additive Models with Interval-Censored Data and Time-Varying Covariates: Application to Human Immunodeficiency Virus Infection in Hemophiliacs," Biometrics, The International Biometric Society, vol. 58(2), pages 443-447, June.
    19. Angel G. Angelov & Magnus Ekström, 2019. "Maximum likelihood estimation for survey data with informative interval censoring," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 217-236, June.
    20. Pao-Sheng Shen, 2020. "Nonparametric estimators of survival function under the mixed case interval-censored model with left truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 624-637, July.
    21. Wei Pan, 2000. "A Multiple Imputation Approach to Cox Regression with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 199-203, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:58:y:2002:i:2:p:298-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.