IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v497y2018icp86-100.html
   My bibliography  Save this article

General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

Author

Listed:
  • Lin, Guoxing

Abstract

Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion {0<α,β≤2} based on the fractional derivative, has not been obtained, where α and β are time and space derivative orders. It is essential to derive a general PFG signal attenuation expression including the FGPW effect for PFG anisotropic anomalous diffusion research. In this paper, two recently developed modified-Bloch equations, the fractal differential modified-Bloch equation and the fractional integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

Suggested Citation

  • Lin, Guoxing, 2018. "General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 86-100.
  • Handle: RePEc:eee:phsmap:v:497:y:2018:i:c:p:86-100
    DOI: 10.1016/j.physa.2018.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118300086
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balescu, R., 2007. "V-Langevin equations, continuous time random walks and fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 62-80.
    2. Lin, Guoxing, 2017. "Analyzing signal attenuation in PFG anomalous diffusion via a modified Gaussian phase distribution approximation based on fractal derivative model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 277-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagnini, Gianni, 2014. "Short note on the emergence of fractional kinetics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 29-34.
    2. Zheng, Yunying & Zhao, Zhengang & Cui, Yanfen, 2019. "The discontinuous Galerkin finite element approximation of the multi-order fractional initial problems," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 257-269.
    3. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
    4. Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.
    5. Pereira-Alves, Felipe & Soares-Pinto, Diogo O. & Paiva, Fernando F., 2024. "NMR diffusion in restricted environment approached by a fractional Langevin model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    6. Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.
    7. Fan Yang & Qu Pu & Xiao-Xiao Li & Dun-Gang Li, 2019. "The Truncation Regularization Method for Identifying the Initial Value on Non-Homogeneous Time-Fractional Diffusion-Wave Equations," Mathematics, MDPI, vol. 7(11), pages 1-21, October.
    8. Richard L. Magin & Ervin K. Lenzi, 2021. "Slices of the Anomalous Phase Cube Depict Regions of Sub- and Super-Diffusion in the Fractional Diffusion Equation," Mathematics, MDPI, vol. 9(13), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:497:y:2018:i:c:p:86-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.