IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p2993-d685501.html
   My bibliography  Save this article

Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates

Author

Listed:
  • Xin Jiang

    (College of Science, North China University of Technology, Beijing 100144, China)

Abstract

This paper studies the global dynamics of a cholera model incorporating age structures and general infection rates. First, we explore the existence and point dissipativeness of the orbit and analyze the asymptotical smoothness. Then, we perform rigorous mathematical analysis on the existence and local stability of equilibria. Based on the uniform persistence, we further investigate the global behavior of the cholera infection model. The results of theoretical analysis are well confirmed by numerical simulations. This research generalizes some known results and provides deeper insights into the dynamics of cholera propagation.

Suggested Citation

  • Xin Jiang, 2021. "Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:2993-:d:685501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/2993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/2993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jódar, Lucas & Villanueva, Rafael J. & Arenas, Abraham J. & González, Gilberto C., 2008. "Nonstandard numerical methods for a mathematical model for influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 622-633.
    2. Misra, A.K. & Gupta, Alok & Venturino, Ezio, 2016. "Cholera dynamics with Bacteriophage infection: A mathematical study," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 610-621.
    3. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
    2. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    3. Hoang, Manh Tuan, 2022. "Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 32-56.
    4. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Higinio Ramos & Shao-Wen Yao & Maryam Molayi, 2022. "Efficient Numerical Solutions to a SIR Epidemic Model," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    5. Hennie Husniah & Ruhanda Ruhanda & Asep K. Supriatna & Md. H. A. Biswas, 2021. "SEIR Mathematical Model of Convalescent Plasma Transfusion to Reduce COVID-19 Disease Transmission," Mathematics, MDPI, vol. 9(22), pages 1-16, November.
    6. Acedo, L. & González-Parra, Gilberto & Arenas, Abraham J., 2010. "Modal series solution for an epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1151-1157.
    7. Wang, Jingjing & Zheng, Hongchan & Jia, Yunfeng, 2021. "Dynamical analysis on a bacteria-phages model with delay and diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Samad Noeiaghdam & Maryam Molayi, 2021. "Nonstandard Finite Difference Schemes for an SIR Epidemic Model," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    9. Adamu, Elias M. & Patidar, Kailash C. & Ramanantoanina, Andriamihaja, 2021. "An unconditionally stable nonstandard finite difference method to solve a mathematical model describing Visceral Leishmaniasis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 171-190.
    10. Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
    11. Tri Nguyen-Huu & Pierre Auger & Ali Moussaoui, 2023. "On Incidence-Dependent Management Strategies against an SEIRS Epidemic: Extinction of the Epidemic Using Allee Effect," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    12. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
    13. Hoang, Manh Tuan, 2022. "Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra’s population growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 359-373.
    14. Medda, Rakesh & Tiwari, Pankaj Kumar & Pal, Samares, 2024. "Impacts of planktonic components on the dynamics of cholera epidemic: Implications from a mathematical model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 505-526.
    15. María Ángeles Castro & Miguel Antonio García & José Antonio Martín & Francisco Rodríguez, 2019. "Exact and Nonstandard Finite Difference Schemes for Coupled Linear Delay Differential Systems," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
    16. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:2993-:d:685501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.