IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v57y2013icp41-53.html
   My bibliography  Save this article

A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay

Author

Listed:
  • Misra, A.K.
  • Mishra, S.N.
  • Pathak, A.L.
  • Srivastava, P.K.
  • Chandra, Peeyush

Abstract

In this paper, a non-linear delay mathematical model for the control of carrier-dependent infectious diseases through insecticides is proposed and analyzed. In the modeling process, it is assumed that disease spreads due to direct contact between susceptibles and infectives as well as through carriers (indirect contact). Further, it is assumed that insecticides are used to kill carriers and the rate of introduction of insecticides is proportional to the density of carriers with some time lag. The model analysis suggests that as delay in using insecticides exceeds some critical value, the system loses its stability and Hopf-bifurcation occurs. The direction, stability and period of the bifurcating periodic solutions arising through Hopf-bifurcation are also analyzed using normal form concept and center manifold theory. Numerical simulation is carried out to confirm the obtained analytical results.

Suggested Citation

  • Misra, A.K. & Mishra, S.N. & Pathak, A.L. & Srivastava, P.K. & Chandra, Peeyush, 2013. "A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 41-53.
  • Handle: RePEc:eee:chsofr:v:57:y:2013:i:c:p:41-53
    DOI: 10.1016/j.chaos.2013.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913001550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Guang-Ping & Li, Xiao-Ling, 2012. "Stability and Hopf bifurcation for a delayed predator–prey model with disease in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 229-237.
    2. Li, Xue-Zhi & Li, Wen-Sheng & Ghosh, Mini, 2009. "Stability and bifurcation of an SIS epidemic model with treatment," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2822-2832.
    3. Misra, A.K. & Lata, Kusum, 2013. "Modeling the effect of time delay on the conservation of forestry biomass," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misra, A.K. & Gupta, Alok & Venturino, Ezio, 2016. "Cholera dynamics with Bacteriophage infection: A mathematical study," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 610-621.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Debaldev & Pathak, Rachana & Agarwal, Manju, 2016. "On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 252-273.
    2. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    3. Srivastav, Akhil Kumar & Ghosh, Mini, 2019. "Assessing the impact of treatment on the dynamics of dengue fever: A case study of India," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Das, Parthasakha & Das, Samhita & Das, Pritha & Rihan, Fathalla A. & Uzuntarla, Muhammet & Ghosh, Dibakar, 2021. "Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    6. Du, Wentong & Xiao, Min & Ding, Jie & Yao, Yi & Wang, Zhengxin & Yang, Xinsong, 2023. "Fractional-order PD control at Hopf bifurcation in a delayed predator–prey system with trans-species infectious diseases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 414-438.
    7. Ma, Zhan-Ping & Yue, Jia-Long, 2023. "Cross diffusion induced spatially inhomogeneous Hopf bifurcation for a three species Lotka–Volterra food web model with cycle," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. A. Misra & Kusum Lata & J. Shukla, 2014. "Effects of population and population pressure on forest resources and their conservation: a modeling study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 361-374, April.
    9. Chen, Xiaoxiao & Wang, Xuedi, 2019. "Qualitative analysis and control for predator-prey delays system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 361-372.
    10. Sahoo, Banshidhar & Poria, Swarup, 2015. "Effects of allochthonous inputs in the control of infectious disease of prey," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 1-19.
    11. Wei Yang, 2021. "Modeling COVID-19 Pandemic with Hierarchical Quarantine and Time Delay," Dynamic Games and Applications, Springer, vol. 11(4), pages 892-914, December.
    12. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    13. Zhang, Jia-Fang & Chen, Heshan, 2014. "Global asymptotic behavior in a Lotka–Volterra competition system with spatio-temporal delays," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 69-75.
    14. Jana, Soovoojeet & Haldar, Palash & Kar, T.K., 2016. "Optimal control and stability analysis of an epidemic model with population dispersal," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 67-81.
    15. Kuddus, Md Abdul & McBryde, Emma S. & Adekunle, Adeshina I. & Meehan, Michael T., 2022. "Analysis and simulation of a two-strain disease model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Lu, Yang & Li, Dan & Liu, Shengqiang, 2016. "Modeling of hunting strategies of the predators in susceptible and infected prey," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 268-285.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:57:y:2013:i:c:p:41-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.