IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i1p304-315.html
   My bibliography  Save this article

Modelling approach for biological control of insect pest by releasing infected pest

Author

Listed:
  • Tan, Yuanshun
  • Chen, Lansun

Abstract

Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R0<1. While R0>1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed.

Suggested Citation

  • Tan, Yuanshun & Chen, Lansun, 2009. "Modelling approach for biological control of insect pest by releasing infected pest," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 304-315.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:1:p:304-315
    DOI: 10.1016/j.chaos.2007.01.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907002111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misra, A.K. & Gupta, Alok & Venturino, Ezio, 2016. "Cholera dynamics with Bacteriophage infection: A mathematical study," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 610-621.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:1:p:304-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.