IDEAS home Printed from https://ideas.repec.org/a/cup/bracjl/v7y2001i02p275-292_00.html
   My bibliography  Save this article

Estimation in the Constant Elasticity of Variance Model

Author

Listed:
  • Yuen, K.C.
  • Yang, H.
  • Chu, K.L.

Abstract

The constant elasticity of variance (CEV) diffusion process can be used to model heteroscedasticity in returns of common stocks. In this diffusion process, the volatility is a function of the stock price and involves two parameters. Similar to the Black-Scholes analysis, the equilibrium price of a call option can be obtained for the CEV model. The purpose of this paper is to propose a new estimation procedure for the CEV model. A merit of our method is that no constraints are imposed on the elasticity parameter of the model. In addition, frequent adjustments of the parameter estimates are not required. Simulation studies indicate that the proposed method is suitable for practical use. As an illustration, real examples on the Hong Kong stock option market are carried out. Various aspects of the method are also discussed.

Suggested Citation

  • Yuen, K.C. & Yang, H. & Chu, K.L., 2001. "Estimation in the Constant Elasticity of Variance Model," British Actuarial Journal, Cambridge University Press, vol. 7(2), pages 275-292, June.
  • Handle: RePEc:cup:bracjl:v:7:y:2001:i:02:p:275-292_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1357321700002233/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    2. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    3. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
    4. Stephen Matteo Miller, 2015. "Leverage effect breakdowns and flight from risky assets," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 865-871, May.
    5. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    6. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:bracjl:v:7:y:2001:i:02:p:275-292_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/baj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.