IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v67y2014icp58-72.html
   My bibliography  Save this article

Investment timing under hybrid stochastic and local volatility

Author

Listed:
  • Kim, Jeong-Hoon
  • Lee, Min-Ku
  • Sohn, So Young

Abstract

We consider an investment timing problem under a real option model where the instantaneous volatility of the project value is given by a combination of a hidden stochastic process and the project value itself. The stochastic volatility part is given by a function of a fast mean-reverting process as well as a slowly varying process and the local volatility part is a power (the elasticity parameter) of the project value itself. The elasticity parameter controls directly the correlation between the project value and the volatility. Knowing that the project value represents the market price of a real asset in many applications and the value of the elasticity parameter depends on the asset, the elasticity parameter should be treated with caution for investment decision problems. Based on the hybrid structure of volatility, we investigate the simultaneous impact of the elasticity and the stochastic volatility on the real option value as well as the investment threshold.

Suggested Citation

  • Kim, Jeong-Hoon & Lee, Min-Ku & Sohn, So Young, 2014. "Investment timing under hybrid stochastic and local volatility," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 58-72.
  • Handle: RePEc:eee:chsofr:v:67:y:2014:i:c:p:58-72
    DOI: 10.1016/j.chaos.2014.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914001027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Brennan, Michael J. & Schwartz, Eduardo S., 1982. "An Equilibrium Model of Bond Pricing and a Test of Market Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(3), pages 301-329, September.
    3. Huang, Bing & Cao, Jiling & Chung, Hyuck, 2014. "Strategic real options with stochastic volatility in a duopoly model," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 40-51.
    4. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    5. Sun-Yong Choi & Jean-Pierre Fouque & Jeong-Hoon Kim, 2013. "Option pricing under hybrid stochastic and local volatility," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1157-1165, July.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    8. Zaevski, Tsvetelin S. & Kim, Young Shin & Fabozzi, Frank J., 2014. "Option pricing under stochastic volatility and tempered stable Lévy jumps," International Review of Financial Analysis, Elsevier, vol. 31(C), pages 101-108.
    9. Ting, Sai Hung Marten & Ewald, Christian-Oliver & Wang, Wen-Kai, 2013. "On the investment–uncertainty relationship in a real option model with stochastic volatility," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 22-32.
    10. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    11. Patel, Kanak & Sing, Tien Foo, 2000. "Implied Volatility in the U.K. Commercial Property Market: Empirical Evidence Based on Transaction Data," The Journal of Real Estate Finance and Economics, Springer, vol. 20(1), pages 5-24, January.
    12. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Min-Ku Lee & Kyu-Hwan Jang, 2014. "Pricing Parisian Option under a Stochastic Volatility Model," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, November.
    15. Kim, Jeong-Hoon, 2004. "Asymptotic theory of noncentered mixing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 161-174, November.
    16. McDonald, Robert & Siegel, Daniel, 1984. "Option Pricing When the Underlying Asset Earns a Below-Equilibrium Rate of Return: A Note," Journal of Finance, American Finance Association, vol. 39(1), pages 261-265, March.
    17. Shaun A. Bond & Soosung Hwang, 2003. "A Measure of Fundamental Volatility in the Commercial Property Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 31(4), pages 577-600, December.
    18. José Carlos Dias & João Pedro Vidal Nunes, 2011. "Pricing real options under the constant elasticity of variance diffusion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(3), pages 230-250, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Donghyun & Choi, Sun-Yong & Yoon, Ji-Hun, 2021. "Pricing of vulnerable options under hybrid stochastic and local volatility," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    3. Yoon, Ji-Hun, 2015. "Pricing perpetual American options under multiscale stochastic elasticity of variance," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 14-26.
    4. Kim, Donghyun & Shin, Yong Hyun & Yoon, Ji-Hun, 2024. "The valuation of real options for risky barrier to entry with hybrid stochastic and local volatility and stochastic investment costs," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Donghyun & Shin, Yong Hyun & Yoon, Ji-Hun, 2024. "The valuation of real options for risky barrier to entry with hybrid stochastic and local volatility and stochastic investment costs," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    4. Carlos Miguel Glória & José Carlos Dias & Aricson Cruz, 2024. "Pricing levered warrants under the CEV diffusion model," Review of Derivatives Research, Springer, vol. 27(1), pages 55-84, April.
    5. José Carlos Dias & João Pedro Vidal Nunes & Aricson Cruz, 2020. "A note on options and bubbles under the CEV model: implications for pricing and hedging," Review of Derivatives Research, Springer, vol. 23(3), pages 249-272, October.
    6. Kim, Jeong-Hoon & Yoon, Ji-Hun & Lee, Jungwoo & Choi, Sun-Yong, 2015. "On the stochastic elasticity of variance diffusions," Economic Modelling, Elsevier, vol. 51(C), pages 263-268.
    7. Min-Ku Lee, 2019. "Pricing Perpetual American Lookback Options Under Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1265-1277, March.
    8. Dias, José Carlos & Nunes, João Pedro Vidal & da Silva, Fernando Correia, 2024. "Finite maturity caps and floors on continuous flows under the constant elasticity of variance process," European Journal of Operational Research, Elsevier, vol. 316(1), pages 361-385.
    9. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    10. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    11. Cao, Jiling & Kim, Jeong-Hoon & Li, Xi & Zhang, Wenjun, 2023. "Valuation of barrier and lookback options under hybrid CEV and stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 660-676.
    12. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    13. Seo, Jun-Ho & Kim, Jeong-Hoon, 2022. "Multiscale stochastic elasticity of variance for options and equity linked annuity; A Mellin transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 303-320.
    14. Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.
    15. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    16. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    17. Michele Moretto & Chiara D’Alpaos, 2004. "The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis," Working Papers 2004.140, Fondazione Eni Enrico Mattei.
    18. Perrakis, Stylianos & Zhong, Rui, 2015. "Credit spreads and state-dependent volatility: Theory and empirical evidence," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 215-231.
    19. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    20. Ting, Sai Hung Marten & Ewald, Christian-Oliver & Wang, Wen-Kai, 2013. "On the investment–uncertainty relationship in a real option model with stochastic volatility," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 22-32.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:67:y:2014:i:c:p:58-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.