IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1337-d796105.html
   My bibliography  Save this article

Bistability and Chaos Emergence in Spontaneous Dynamics of Astrocytic Calcium Concentration

Author

Listed:
  • Evgeniya V. Pankratova

    (Lobachevsky State University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia
    Neuroscience Research Institute, Samara State Medical University, 443099 Samara, Russia)

  • Maria S. Sinitsina

    (Lobachevsky State University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia)

  • Susanna Gordleeva

    (Lobachevsky State University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia
    Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, Russia)

  • Victor B. Kazantsev

    (Lobachevsky State University of Nizhni Novgorod, 603950 Nizhny Novgorod, Russia
    Neuroscience Research Institute, Samara State Medical University, 443099 Samara, Russia
    Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, Russia)

Abstract

In this work, we consider a mathematical model describing spontaneous calcium signaling in astrocytes. Based on biologically relevant principles, this model simulates experimentally observed calcium oscillations and can predict the emergence of complicated dynamics. Using analytical and numerical analysis, various attracting sets were found and investigated. Employing bifurcation theory analysis, we examined steady state solutions, bistability, simple and complicated periodic limit cycles and also chaotic attractors. We found that astrocytes possess a variety of complex dynamical modes, including chaos and multistability, that can further provide different modulations of neuronal circuits, enhancing their plasticity and flexibility.

Suggested Citation

  • Evgeniya V. Pankratova & Maria S. Sinitsina & Susanna Gordleeva & Victor B. Kazantsev, 2022. "Bistability and Chaos Emergence in Spontaneous Dynamics of Astrocytic Calcium Concentration," Mathematics, MDPI, vol. 10(8), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1337-:d:796105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Megam Ngouonkadi, E.B. & Fotsin, H.B. & Louodop Fotso, P. & Kamdoum Tamba, V. & Cerdeira, Hilda A., 2016. "Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 151-163.
    2. Chen, Zhenyang & Chen, Fangqi, 2020. "Mixed mode oscillations induced by bi-stability and fractal basins in the FGP plate under slow parametric and resonant external excitations," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Rozhnova, Maiya A. & Pankratova, Evgeniya V. & Stasenko, Sergey V. & Kazantsev, Victor B., 2021. "Bifurcation analysis of multistability and oscillation emergence in a model of brain extracellular matrix," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Quanbao Ji & Min Ye & Zhouchao Wei, 2021. "Control of Chaotic Calcium Oscillations in Biological Cells," Complexity, Hindawi, vol. 2021, pages 1-7, February.
    5. An, Xinlei & Qiao, Shuai, 2021. "The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Min Ye & Hongkun Zuo, 2020. "Stability Analysis of Regular and Chaotic Ca 2+ Oscillations in Astrocytes," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Fengling Jia & Peiyan He & Lixin Yang, 2024. "A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    5. Tabekoueng Njitacke, Zeric & Tsafack, Nestor & Ramakrishnan, Balamurali & Rajagopal, Kartikeyan & Kengne, Jacques & Awrejcewicz, Jan, 2021. "Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: Application in images encryption," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Wei, Mengke & Jiang, Wenan & Ma, Xindong & Zhang, Xiaofang & Han, Xiujing & Bi, Qinsheng, 2021. "Compound bursting dynamics in a parametrically and externally excited mechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Wei, Mengke & Han, Xiujing, 2024. "Fast–slow dynamics related to sharp transition behaviors in the Rayleigh oscillator with two slow square wave excitations," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    9. Danjin Zhang & Youhua Qian, 2023. "Bursting Oscillations in General Coupled Systems: A Review," Mathematics, MDPI, vol. 11(7), pages 1-16, April.
    10. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Li, Bo & Liang, Houjun & He, Qizhi, 2021. "Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Kemwoue, Florent Feudjio & Deli, Vandi & Edima, Hélène Carole & Mendimi, Joseph Marie & Gninzanlong, Carlos Lawrence & Dedzo, Mireille Mbou & Tagne, Jules Fossi & Atangana, Jacques, 2022. "Effects of delay in a biological environment subject to tumor dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Xu, Quan & Wang, Yiteng & Wu, Huagan & Chen, Mo & Chen, Bei, 2024. "Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin-Huxley circuit," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    14. Bao, Han & Yu, Xihong & Zhang, Yunzhen & Liu, Xiaofeng & Chen, Mo, 2023. "Initial condition-offset regulating synchronous dynamics and energy diversity in a memristor-coupled network of memristive HR neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Gao, Chenghua & Qiao, Shuai & An, Xinlei, 2022. "Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Sharma, Sanjeev Kumar & Mondal, Arnab & Mondal, Argha & Aziz-Alaoui, M.A. & Upadhyay, Ranjit Kumar & Ma, Jun, 2022. "Emergence of Canard induced mixed mode oscillations in a slow–fast dynamics of a biophysical excitable model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    17. Wei, Mengke & Han, Xiujing & Bi, Qinsheng, 2022. "Sufficient conditions and criteria for the pulse-shaped explosion related to equilibria in a class of nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    18. Lai, Qiang & Yang, Liang, 2023. "Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    19. Boui A Boya, Bertrand Frederick & Ramakrishnan, Balamurali & Effa, Joseph Yves & Kengne, Jacques & Rajagopal, Karthikeyan, 2022. "The effects of symmetry breaking on the dynamics of an inertial neural system with a non-monotonic activation function: Theoretical study, asymmetric multistability and experimental investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    20. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2024. "Dynamics and stability of neural systems with indirect interactions involved energy levels," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1337-:d:796105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.