IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922001783.html
   My bibliography  Save this article

On the estimation of percolation thresholds for real networks

Author

Listed:
  • Rong, Qingnan
  • Zhang, Jun
  • Sun, Xiaoqian
  • Wandelt, Sebastian

Abstract

The percolation threshold is the critical point at which a giant connected component emerges for the first time in the percolation process. Its theoretical estimation has recently gathered much attention, especially for real networks with complicated structures. However, the theoretical methods so far mainly provide lower bounds of the percolation threshold with non-negligible errors. In this paper, we first generalize the existing message passing algorithm by considering the independence of variables in iteration equations. We then give the exact implicit expressions of the site and bond percolation thresholds based on the correction δs(b). The experimental results show that the correction is strongly related to network structural properties so that we can predict it by the gradient boosting regression model. Finally, we take the predicted correction δs(b) to our theoretical framework and show that our estimates of site and bond percolation thresholds on 209 real networks are more accurate than those of the state-of-the-art methods.

Suggested Citation

  • Rong, Qingnan & Zhang, Jun & Sun, Xiaoqian & Wandelt, Sebastian, 2022. "On the estimation of percolation thresholds for real networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922001783
    DOI: 10.1016/j.chaos.2022.111968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Filippo Radicchi & Claudio Castellano, 2015. "Breaking of the site-bond percolation universality in networks," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    2. Wandelt, Sebastian & Sun, Xiaoqian & Menasalvas, Ernestina & Rodríguez-González, Alejandro & Zanin, Massimiliano, 2019. "On the use of random graphs as null model of large connected networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 318-325.
    3. Wandelt, Sebastian & Lin, Wei & Sun, Xiaoqian & Zanin, Massimiliano, 2022. "From random failures to targeted attacks in network dismantling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Xiaoqian Sun & Sebastian Wandelt, 2021. "Robustness of Air Transportation as Complex Networks:Systematic Review of 15 Years of Research and Outlook into the Future," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    5. Shang, Yilun, 2021. "Generalized k-cores of networks under attack with limited knowledge," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Li, Zhaoxing & Chen, Li, 2019. "Robustness of multipartite networks in face of random node failure," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 149-159.
    8. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Yuan & Qi, Mingze & Huangpeng, Qizi & Duan, Xiaojun, 2023. "Percolation of interlayer feature-correlated multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "Towards analyzing the robustness of the Integrated Global Transportation Network Abstraction (IGTNA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    2. Qing Cai & Mahardhika Pratama & Sameer Alam, 2019. "Interdependency and Vulnerability of Multipartite Networks under Target Node Attacks," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    3. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    6. Li, Jiahui & Qi, Xiaogang & He, Yi & Liu, Lifang, 2024. "SDN candidate and protection path selection for link failure protection in hybrid SDNs," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    8. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    10. Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Xu, Mengqiao & Deng, Wenhui & Zhu, Yifan & LÜ, Linyuan, 2023. "Assessing and improving the structural robustness of global liner shipping system: A motif-based network science approach," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    12. Wu, Rui-Jie & Kong, Yi-Xiu & Di, Zengru & Zhang, Yi-Cheng & Shi, Gui-Yuan, 2022. "Analytical solution to the k-core pruning process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    13. Shen, Jingwei & Zong, Huiming, 2023. "Identification of critical transportation cities in the multimodal transportation network of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    14. Shu, Panpan & Wang, Wei & Eugene Stanley, H. & Braunstein, Lidia A., 2018. "A general social contagion dynamic in interconnected lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 272-279.
    15. Wentao Wu & Shihai Wang & Bin Liu, 2024. "Software Fault Localization Based on Weighted Association Rule Mining and Complex Networks," Mathematics, MDPI, vol. 12(13), pages 1-22, July.
    16. Wang, Xinglong & Peng, Jinhan & Tang, Junqing & Lu, Qiuchen & Li, Xiaowei, 2022. "Investigating the impact of adding new airline routes on air transportation resilience in China," Transport Policy, Elsevier, vol. 125(C), pages 79-95.
    17. Sugishita, Kashin & Mizutani, Hiroki & Hanaoka, Shinya, 2024. "Disruption and recovery of the US domestic airline networks during the COVID-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 114(C).
    18. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Zizhen Xu & Shauhrat S. Chopra, 2023. "Interconnectedness enhances network resilience of multimodal public transportation systems for Safe-to-Fail urban mobility," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "AI-driven assistants for education and research? A case study on ChatGPT for air transport management," Journal of Air Transport Management, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922001783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.