Assessing the impact of treatment on the dynamics of dengue fever: A case study of India
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2019.06.047
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cai, Liming & Guo, Shumin & Li, XueZhi & Ghosh, Mini, 2009. "Global dynamics of a dengue epidemic mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2297-2304.
- Tewa, Jean Jules & Dimi, Jean Luc & Bowong, Samuel, 2009. "Lyapunov functions for a dengue disease transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 936-941.
- Li, Xue-Zhi & Li, Wen-Sheng & Ghosh, Mini, 2009. "Stability and bifurcation of an SIS epidemic model with treatment," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2822-2832.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ran, Xue & Hu, Lin & Nie, Lin-Fei & Teng, Zhidong, 2021. "Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate," Applied Mathematics and Computation, Elsevier, vol. 394(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saha, Pritam & Sikdar, Gopal Chandra & Ghosh, Jayanta Kumar & Ghosh, Uttam, 2023. "Disease dynamics and optimal control strategies of a two serotypes dengue model with co-infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 16-43.
- Abidemi, A. & Abd Aziz, M.I. & Ahmad, R., 2020. "Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Arenas, Abraham J. & González-Parra, Gilberto & Villanueva Micó, Rafael-J., 2010. "Modeling toxoplasmosis spread in cat populations under vaccination," Theoretical Population Biology, Elsevier, vol. 77(4), pages 227-237.
- Kolebaje, Olusola & Popoola, Oyebola & Khan, Muhammad Altaf & Oyewande, Oluwole, 2020. "An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Anusit Chamnan & Puntani Pongsumpun & I-Ming Tang & Napasool Wongvanich, 2022. "Effect of a Vaccination against the Dengue Fever Epidemic in an Age Structure Population: From the Perspective of the Local and Global Stability Analysis," Mathematics, MDPI, vol. 10(6), pages 1-25, March.
- Malik, Hafiz Abid Mahmood & Abid, Faiza & Wahiddin, Mohamed Ridza & Waqas, Ahmad, 2021. "Modeling of internal and external factors affecting a complex dengue network," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
- Liao, Shu & Wang, Jin, 2012. "Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 966-977.
- Xu, Zhiting & Zhao, Yingying, 2015. "A diffusive dengue disease model with nonlocal delayed transmission," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 808-829.
- Xue, Ling & Zhang, Hongyu & Sun, Wei & Scoglio, Caterina, 2021. "Transmission dynamics of multi-strain dengue virus with cross-immunity," Applied Mathematics and Computation, Elsevier, vol. 392(C).
- Misra, A.K. & Mishra, S.N. & Pathak, A.L. & Srivastava, P.K. & Chandra, Peeyush, 2013. "A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 41-53.
- Cai, Liming & Guo, Shumin & Li, XueZhi & Ghosh, Mini, 2009. "Global dynamics of a dengue epidemic mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2297-2304.
- Ran, Xue & Hu, Lin & Nie, Lin-Fei & Teng, Zhidong, 2021. "Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate," Applied Mathematics and Computation, Elsevier, vol. 394(C).
- Wang, Lei & Gao, Chunjie & Rifhat, Ramziya & Wang, Kai & Teng, Zhidong, 2024. "Stationary distribution and bifurcation analysis for a stochastic SIS model with nonlinear incidence and degenerate diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
- Dany Pascal Moualeu-Ngangue & Susanna Röblitz & Rainald Ehrig & Peter Deuflhard, 2015. "Parameter Identification in a Tuberculosis Model for Cameroon," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-20, April.
- Zhu, Min & Xu, Yong, 2019. "A time-periodic dengue fever model in a heterogeneous environment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 115-129.
- Zhu, Min & Xu, Yong & Cao, Jinde, 2019. "The asymptotic profile of a dengue fever model on a periodically evolving domain," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
- Jana, Soovoojeet & Haldar, Palash & Kar, T.K., 2016. "Optimal control and stability analysis of an epidemic model with population dispersal," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 67-81.
- Kuddus, Md Abdul & McBryde, Emma S. & Adekunle, Adeshina I. & Meehan, Michael T., 2022. "Analysis and simulation of a two-strain disease model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
More about this item
Keywords
Dengue model; Logistic growth; Existence of equilibrium and backward bifurcation; Stability analysis; Sensitivity analysis; Parameter estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:362:y:2019:i:c:58. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.