IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i5p1449-1456.html
   My bibliography  Save this article

Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA

Author

Listed:
  • Liu, Zhanwei
  • Hu, Guoen
  • Wu, Guochang
  • Jiang, Bin

Abstract

In this paper, we study semi-orthogonal frame wavelets and Parseval frame wavelets (PFWs) in L2(Rd) with matrix dilations of form (Df)(x)=2f(Ax), where A is an arbitrary expanding d×d matrix with integer coefficients, such that |detA|=2. Firstly, we obtain a necessary and sufficient condition for a frame wavelet to be a semi-orthogonal frame wavelet. Secondly, we present a necessary condition for the semi-orthogonal frame wavelets. When the frame wavelets are the PFWs, we prove that all PFWs associated with generalized multiresolution analysis (GMRA) are equivalent to a closed subspace W0 for which {Tkψ:k∈Zd} is a Parseval frame (PF). Finally, by showing the relation between principal shift invariant spaces and their bracket function, we discover a property of the PFWs associated with GMRA by the PFWs’ minimal vector-filter. In each section, we construct concrete examples.

Suggested Citation

  • Liu, Zhanwei & Hu, Guoen & Wu, Guochang & Jiang, Bin, 2008. "Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1449-1456.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:5:p:1449-1456
    DOI: 10.1016/j.chaos.2008.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908001665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 39-42.
    2. El Naschie, M.S., 2008. "Notes on exceptional lie symmetry groups hierarchy and possible implications for E-Infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 67-70.
    3. El Naschie, M.S., 2008. "Symmetry group prerequisite for E-infinity in high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 202-211.
    4. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    5. El Naschie, M.S., 2006. "Hilbert space, the number of Higgs particles and the quantum two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 9-13.
    6. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    7. El Naschie, M.S., 2007. "SO(10) grand unification in a fuzzy setting," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 958-961.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhanwei & Hu, Guoen & Lu, Zhibo, 2009. "Parseval frame scaling sets and MSF Parseval frame wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1966-1974.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xiuge & Wu, Guochang, 2009. "A characteristic description of orthonormal wavelet on subspace LE2(R) of L2(R)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2484-2490.
    2. Liu, Zhanwei & Hu, Guoen & Lu, Zhibo, 2009. "Parseval frame scaling sets and MSF Parseval frame wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1966-1974.
    3. Li, Dengfeng & Wu, Guochang, 2009. "Construction of a class of Daubechies type wavelet bases," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 620-625.
    4. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    5. Sun, Lei & Zhang, Xiaozhong, 2009. "A note on biorthogonality of the scaling functions with arbitrary matrix dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 711-715.
    6. Iovane, Gerardo, 2009. "The set of prime numbers: Multiscale analysis and numeric accelerators," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1953-1965.
    7. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    8. EL-Nabulsi, Ahmad Rami, 2009. "Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 52-61.
    9. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    10. Sun, Lei & Li, Gang, 2009. "Generalized orthogonal multiwavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2420-2424.
    11. Han, Jincang & Cheng, Zhengxing, 2009. "On the splitting trick and wavelets packets with arbitrary dilation matrix of L2(Rs)," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 130-137.
    12. Iovane, Gerardo & Giordano, Paola, 2007. "Wavelets and multiresolution analysis: Nature of ε(∞) Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 896-910.
    13. Li, Rui & Wu, Guochang, 2009. "The orthogonal interpolating balanced multiwavelet with rational coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 892-899.
    14. El-Nabulsi, Rami Ahmad, 2009. "Fractional Dirac operators and deformed field theory on Clifford algebra," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2614-2622.
    15. Iovane, Gerardo, 2008. "The distribution of prime numbers: The solution comes from dynamical processes and genetic algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 23-42.
    16. Sun, Lei & Cheng, Zhengxing, 2007. "Construction of a class of compactly supported orthogonal vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 253-261.
    17. Rami, El-Nabulsi Ahmad, 2009. "Fractional illusion theory of space: Fractional gravitational field with fractional extra-dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 377-384.
    18. Rami, El-Nabulsi Ahmad, 2009. "On the fractional minimal length Heisenberg–Weyl uncertainty relation from fractional Riccati generalized momentum operator," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 84-88.
    19. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Design and characterizations of a class of orthogonal multiple vector-valued wavelets with 4-scale," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 91-102.
    20. Marek-Crnjac, L., 2008. "Exceptional Lie groups hierarchy, orthogonal and unitary groups in connection with symmetries of E-infinity space-time," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 517-520.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:5:p:1449-1456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.