IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i3p1604-1610.html
   My bibliography  Save this article

A new application of variational iteration method for the chaotic Rössler system

Author

Listed:
  • Goh, S.M.
  • Noorani, M.S.M.
  • Hashim, I.

Abstract

This paper emphasizes the strength of variational iteration method (VIM) in numerically solving the chaotic Rössler system. The Rössler system is a three-dimensional system of ODEs with quadratic nonlinearities. An adaptation of the VIM was implemented and is called the multistage VIM (MVIM). Numerical comparisons are made between MVIM and the classical fourth-order Runge–Kutta (RK4) with results showing extremely good performance by MVIM, yielding great accuracy and efficiency.

Suggested Citation

  • Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "A new application of variational iteration method for the chaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1604-1610.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1604-1610
    DOI: 10.1016/j.chaos.2009.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909001490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    2. Noorani, M.S.M. & Hashim, I. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2007. "Comparing numerical methods for the solutions of the Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1296-1304.
    3. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    4. Al-Sawalha, M. Mossa & Noorani, M.S.M. & Hashim, I., 2009. "On accuracy of Adomian decomposition method for hyperchaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1801-1807.
    5. Allan, Fathi M., 2009. "Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1744-1752.
    6. Abulwafa, E.M. & Abdou, M.A. & Mahmoud, A.A., 2006. "The solution of nonlinear coagulation problem with mass loss," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 313-330.
    7. Hashim, I. & Noorani, M.S.M. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2006. "Accuracy of the Adomian decomposition method applied to the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1149-1158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    2. Hashim, I. & Chowdhury, M.S.H. & Mawa, S., 2008. "On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 823-827.
    3. Chowdhury, M.S.H. & Hashim, I. & Momani, S., 2009. "The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1929-1937.
    4. Al-Sawalha, M. Mossa & Noorani, M.S.M. & Hashim, I., 2009. "On accuracy of Adomian decomposition method for hyperchaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1801-1807.
    5. Lozi, René & Pogonin, Vasiliy A. & Pchelintsev, Alexander N., 2016. "A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 108-114.
    6. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    7. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    8. Abdel-Halim Hassan, I.H., 2008. "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 53-65.
    9. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    10. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    11. Batiha, B. & Noorani, M.S.M. & Hashim, I., 2008. "Application of variational iteration method to the generalized Burgers–Huxley equation," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 660-663.
    12. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    13. Alomari, A.K. & Noorani, M.S.M. & Nazar, R., 2009. "On the homotopy analysis method for the exact solutions of Helmholtz equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1873-1879.
    14. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    15. Alexander N. Pchelintsev, 2022. "On a High-Precision Method for Studying Attractors of Dynamical Systems and Systems of Explosive Type," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    16. Gordoa, P.R., 2007. "A note on solutions of an equation modelling arterial deformation," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1505-1511.
    17. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    18. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    19. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    20. Alipanah, Amjad & Zafari, Mahnaz, 2023. "Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1604-1610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.