Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2006.06.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- El-Danaf, Talaat S. & Ramadan, Mohamed A. & Abd Alaal, Faysal E.I., 2005. "The use of adomian decomposition method for solving the regularized long-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 747-757.
- C. L. Chen & Y. C. Liu, 1998. "Solution of Two-Point Boundary-Value Problems Using the Differential Transformation Method," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 23-35, October.
- Helal, M.A. & Mehanna, M.S., 2006. "A comparison between two different methods for solving KdV–Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 320-326.
- Kamdem, J. Sadefo & Qiao, Zhijun, 2007.
"Decomposition method for the Camassa–Holm equation,"
Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 437-447.
- J. Sadefo Kamdem & Zhijun Qiao, 2007. "Decomposition method for the Camassa–Holm equation," Post-Print hal-02938583, HAL.
- Lesnic, D., 2006. "Blow-up solutions obtained using the decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 776-787.
- Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
- Abulwafa, E.M. & Abdou, M.A. & Mahmoud, A.A., 2006. "The solution of nonlinear coagulation problem with mass loss," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 313-330.
- Hashim, I. & Noorani, M.S.M. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2006. "Accuracy of the Adomian decomposition method applied to the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1149-1158.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.
- Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.
- Kangalgil, Figen & Ayaz, Fatma, 2009. "Solitary wave solutions for the KdV and mKdV equations by differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 464-472.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
- Elgazery, Nasser S., 2008. "Numerical solution for the Falkner–Skan equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 738-746.
- Tajvidi, T. & Razzaghi, M. & Dehghan, M., 2008. "Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 59-66.
- Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
- Jules Sadefo-Kamdem, 2011. "Integral Transforms With The Homotopy Perturbation Method And Some Applications," Working Papers hal-00580023, HAL.
- Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
- Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "A new application of variational iteration method for the chaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1604-1610.
- Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.
- Ramos, J.I., 2009. "Generalized decomposition methods for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1078-1084.
- Ramos, J.I., 2007. "Solitary waves of the EW and RLW equations," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1498-1518.
- Al-Sawalha, M. Mossa & Noorani, M.S.M. & Hashim, I., 2009. "On accuracy of Adomian decomposition method for hyperchaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1801-1807.
- Hammad, D.A. & El-Azab, M.S., 2016. "Chebyshev–Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 228-240.
- Lozi, René & Pogonin, Vasiliy A. & Pchelintsev, Alexander N., 2016. "A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 108-114.
- Lv, Na & Mei, Jian-Qin & Zhang, Hong-Qing, 2012. "Differential form method for finding symmetries of a (2+1)-dimensional Camassa–Holm system based on its Lax pair," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 503-506.
- Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
- Noorani, M.S.M. & Hashim, I. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2007. "Comparing numerical methods for the solutions of the Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1296-1304.
- Hashim, I. & Chowdhury, M.S.H. & Mawa, S., 2008. "On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 823-827.
- Chein-Shan Liu, 2012. "The Lie-Group Shooting Method for Solving Multi-dimensional Nonlinear Boundary Value Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 468-495, February.
- Ramos, J.I., 2007. "Solitary wave interactions of the GRLW equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 479-491.
- Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:36:y:2008:i:1:p:53-65. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.