IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1207-d788737.html
   My bibliography  Save this article

On a High-Precision Method for Studying Attractors of Dynamical Systems and Systems of Explosive Type

Author

Listed:
  • Alexander N. Pchelintsev

    (Department of Higher Mathematics, Tambov State Technical University, ul. Sovetskaya 106, 392000 Tambov, Russia)

Abstract

The author of this article considers a numerical method that uses high-precision calculations to construct approximations to attractors of dynamical systems of chaotic type with a quadratic right-hand side, as well as to find the vertical asymptotes of solutions of systems of explosive type. A special case of such systems is the population explosion model. A theorem on the existence of asymptotes is proved. The extension of the numerical method for piecewise smooth systems is described using the Chua system as an example, as well as systems with hysteresis.

Suggested Citation

  • Alexander N. Pchelintsev, 2022. "On a High-Precision Method for Studying Attractors of Dynamical Systems and Systems of Explosive Type," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1207-:d:788737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lozi, René & Pogonin, Vasiliy A. & Pchelintsev, Alexander N., 2016. "A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 108-114.
    2. Alexander N. Pchelintsev, 2021. "On the Poisson Stability to Study a Fourth-Order Dynamical System with Quadratic Nonlinearities," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    3. Abdulaziz, O. & Noor, N.F.M. & Hashim, I. & Noorani, M.S.M., 2008. "Further accuracy tests on Adomian decomposition method for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1405-1411.
    4. Al-Sawalha, M. Mossa & Noorani, M.S.M. & Hashim, I., 2009. "On accuracy of Adomian decomposition method for hyperchaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1801-1807.
    5. Hashim, I. & Noorani, M.S.M. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2006. "Accuracy of the Adomian decomposition method applied to the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1149-1158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lozi, René & Pogonin, Vasiliy A. & Pchelintsev, Alexander N., 2016. "A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 108-114.
    2. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    3. Al-Sawalha, M. Mossa & Noorani, M.S.M. & Hashim, I., 2009. "On accuracy of Adomian decomposition method for hyperchaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1801-1807.
    4. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "A new application of variational iteration method for the chaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1604-1610.
    5. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    6. Chowdhury, M.S.H. & Hashim, I. & Momani, S., 2009. "The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1929-1937.
    7. Abdulaziz, O. & Noor, N.F.M. & Hashim, I. & Noorani, M.S.M., 2008. "Further accuracy tests on Adomian decomposition method for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1405-1411.
    8. Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.
    9. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    10. Marius-F. Danca & Nikolay Kuznetsov, 2021. "Hidden Strange Nonchaotic Attractors," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    11. Noorani, M.S.M. & Hashim, I. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2007. "Comparing numerical methods for the solutions of the Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1296-1304.
    12. Abdel-Halim Hassan, I.H., 2008. "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 53-65.
    13. Hashim, I. & Chowdhury, M.S.H. & Mawa, S., 2008. "On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 823-827.
    14. Alexander N. Pchelintsev, 2021. "On the Poisson Stability to Study a Fourth-Order Dynamical System with Quadratic Nonlinearities," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    15. Sekson Sirisubtawee & Supaporn Kaewta, 2017. "New Modified Adomian Decomposition Recursion Schemes for Solving Certain Types of Nonlinear Fractional Two-Point Boundary Value Problems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-20, July.
    16. António M. Lopes & J. A. Tenreiro Machado, 2022. "Nonlinear Dynamics," Mathematics, MDPI, vol. 10(15), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1207-:d:788737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.