IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i5p1735-1741.html
   My bibliography  Save this article

Novel stability criteria for neutral systems with multiple time delays

Author

Listed:
  • Xiong, Wenjun
  • Liang, Jinling

Abstract

Based on the eigenvalues of characteristic equations, some new criteria are derived to ensure the asymptotic stability for a class of neutral differential equations with multiple time delays. Conditions obtained here are independent of the time delays and easy to be checked. When suitable fj(·) (j=1,2,…,m) are chosen, the model studied in this paper will reduce to a simple form. Moreover, our results can resolve some nonlinear neutral problems which are seldom discussed. Finally, an example with numerical simulation is given to show the effectiveness of our method.

Suggested Citation

  • Xiong, Wenjun & Liang, Jinling, 2007. "Novel stability criteria for neutral systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1735-1741.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1735-1741
    DOI: 10.1016/j.chaos.2005.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905012130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Bao Tong & Lou, Xu Yang, 2006. "Global asymptotic stability of BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1347-1354.
    2. Zhou, Jin & Chen, Tianping & Xiang, Lan, 2006. "Robust synchronization of delayed neural networks based on adaptive control and parameters identification," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 905-913.
    3. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    4. J. H. Park & S. Won, 1999. "Asymptotic Stability of Neutral Systems with Multiple Delays," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 183-200, October.
    5. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2006. "Stability analysis for cellular neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 331-336.
    6. Tu, Fenghua & Liao, Xiaofeng & Zhang, Wei, 2006. "Delay-dependent asymptotic stability of a two-neuron system with different time delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 437-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Fang & Cui, Baotong & Ji, Yan, 2009. "Novel robust stability analysis for uncertain neutral system with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1820-1828.
    2. Yu, Ker-Wei & Lien, Chang-Hua, 2008. "Stability criteria for uncertain neutral systems with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 650-657.
    3. Tian, Junkang & Xiong, Lianglin & Liu, Jianxing & Xie, Xiangjun, 2009. "Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1858-1866.
    4. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "New robust stability condition for uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1073-1079.
    5. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    6. Öcalan, Özkan & Duman, Oktay, 2009. "Oscillation analysis of neutral difference equations with delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 261-270.
    7. Bolat, Yaşar, 2009. "Oscillation of higher order neutral type nonlinear difference equations with forcing terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2973-2980.
    8. Wang, Wansheng & Li, Shoufu & Wang, Wenqiang, 2009. "Contractivity properties of a class of linear multistep methods for nonlinear neutral delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 421-425.
    9. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "Novel robust stability criteria of uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 771-777.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    2. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    3. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    4. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.
    5. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    6. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    7. Singh, Vimal, 2007. "On global robust stability of interval Hopfield neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1183-1188.
    8. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    9. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    10. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    11. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    12. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    13. Öcalan, Özkan & Duman, Oktay, 2009. "Oscillation analysis of neutral difference equations with delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 261-270.
    14. Lou, Xuyang & Cui, Baotong, 2007. "Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 653-662.
    15. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.
    16. Singh, Vimal, 2007. "Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 259-263.
    17. Zhang, Qiang & Xu, Xiaopeng Wei Jin, 2007. "Delay-dependent global stability results for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 662-668.
    18. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of delayed Cohen–Grossberg neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 872-877.
    19. Bolat, Yaşar, 2009. "Oscillation of higher order neutral type nonlinear difference equations with forcing terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2973-2980.
    20. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2008. "Delay-dependent exponential stability criteria for non-autonomous cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 985-990.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1735-1741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.