IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i3p878-885.html
   My bibliography  Save this article

Global exponential stability of fuzzy cellular neural networks with delays and reaction–diffusion terms

Author

Listed:
  • Wang, Jian
  • Lu, Jun Guo

Abstract

In this paper, we study the global exponential stability of fuzzy cellular neural networks with delays and reaction–diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain a sufficient condition for the uniqueness and global exponential stability of the equilibrium solution for a class of fuzzy cellular neural networks with delays and reaction–diffusion terms. The result imposes constraint conditions on the network parameters independently of the delay parameter. The result is also easy to check and plays an important role in the design and application of globally exponentially stable fuzzy neural circuits.

Suggested Citation

  • Wang, Jian & Lu, Jun Guo, 2008. "Global exponential stability of fuzzy cellular neural networks with delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 878-885.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:3:p:878-885
    DOI: 10.1016/j.chaos.2007.01.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907000483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Bao Tong & Lou, Xu Yang, 2006. "Global asymptotic stability of BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1347-1354.
    2. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Xiaomei & Zhang, Fengqin & Wang, Wenjuan, 2011. "Global exponential synchronization of delayed fuzzy cellular neural networks with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 9-16.
    2. Fei Luo & Weiyi Hu & Enli Wu & Xiufang Yuan, 2024. "Global Exponential Stability of Impulsive Delayed Neural Networks with Parameter Uncertainties and Reaction–Diffusion Terms," Mathematics, MDPI, vol. 12(15), pages 1-15, July.
    3. Wang, Xiaohu & Xu, Daoyi, 2009. "Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2713-2721.
    4. Lu, Jun Guo & Lu, Lin Ji, 2009. "Global exponential stability and periodicity of reaction–diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1538-1549.
    5. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    2. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.
    3. Lou, Xu Yang & Cui, Bao Tong, 2008. "Global robust dissipativity for integro-differential systems modeling neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 469-478.
    4. Liao, Huaying & Zhang, Zhengqiu & Ren, Ling & Peng, Wenli, 2017. "Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 785-797.
    5. Lu, Jun Guo, 2008. "Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 116-125.
    6. Lu, Jun Guo & Lu, Lin Ji, 2009. "Global exponential stability and periodicity of reaction–diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1538-1549.
    7. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.
    8. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    9. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    10. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    11. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    12. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Existence and globally exponential stability of equilibrium for BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 588-597.
    13. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    14. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    15. Lou, Xu Yang & Cui, Bao Tong, 2006. "Global asymptotic stability of delay BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 1023-1031.
    16. Wang, Hui & Liao, Xiaofeng & Li, Chuandong, 2007. "Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1028-1039.
    17. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    18. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    19. Zhang, Qianhong & Luo, Wei, 2009. "Global exponential stability of fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2239-2245.
    20. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:3:p:878-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.