IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i3p658-664.html
   My bibliography  Save this article

Exponential stability of delayed fuzzy cellular neural networks with diffusion

Author

Listed:
  • Huang, Tingwen

Abstract

The exponential stability of delayed fuzzy cellular neural networks (FCNN) with diffusion is investigated. Exponential stability, significant for applications of neural networks, is obtained under conditions that are easily verified by a new approach. Earlier results on the exponential stability of FCNN with time-dependent delay, a special case of the model studied in this paper, are improved without using the time-varying term condition: dτ(t)/dt<μ.

Suggested Citation

  • Huang, Tingwen, 2007. "Exponential stability of delayed fuzzy cellular neural networks with diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 658-664.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:3:p:658-664
    DOI: 10.1016/j.chaos.2005.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905009719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    2. Yu, Juan & Hu, Cheng & Jiang, Haijun & Teng, Zhidong, 2012. "Exponential lag synchronization for delayed fuzzy cellular neural networks via periodically intermittent control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 895-908.
    3. Sha, Chunlin & Zhao, Hongyong, 2019. "A novel neurodynamic reaction-diffusion model for solving linear variational inequality problems and its application," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 57-75.
    4. Fei Luo & Weiyi Hu & Enli Wu & Xiufang Yuan, 2024. "Global Exponential Stability of Impulsive Delayed Neural Networks with Parameter Uncertainties and Reaction–Diffusion Terms," Mathematics, MDPI, vol. 12(15), pages 1-15, July.
    5. Wang, Xiaohu & Xu, Daoyi, 2009. "Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2713-2721.
    6. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.
    7. Sun, Yeong-Jeu, 2009. "Robust stability of uncertain T–S fuzzy time-varying systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1588-1594.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:3:p:658-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.