IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p2022-2024.html
   My bibliography  Save this article

Global exponential stability criterion for uncertain discrete-time cellular neural networks

Author

Listed:
  • Sun, Yeong-Jeu

Abstract

This paper deals with the robust stability problem for a class of uncertain discrete-time cellular neural networks (UDTCNNs). A simple criterion is derived to guarantee the global exponential stability (GES) of such networks. A simple method is also proposed to calculate the guaranteed exponential decay rate of such networks. Finally, a numerical example is provided to illustrate the main result.

Suggested Citation

  • Sun, Yeong-Jeu, 2009. "Global exponential stability criterion for uncertain discrete-time cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2022-2024.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:2022-2024
    DOI: 10.1016/j.chaos.2008.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Wanmin & Zhou, Qiyuan & Xiao, Bing & Yu, Yuehua, 2007. "Global exponential stability of cellular neural networks with mixed delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 896-902.
    2. Liu, Bingwen & Huang, Lihong, 2007. "Existence and exponential stability of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 95-103.
    3. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    4. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    5. Xia, Yonghui & Cao, Jinde & Huang, Zhenkun, 2007. "Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1599-1607.
    6. Chen, Hsin-Chieh & Hung, Yung-Ching & Chen, Chang-Kuo & Liao, Teh-Lu & Chen, Chun-Kuo, 2006. "Image-processing algorithms realized by discrete-time cellular neural networks and their circuit implementations," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1100-1108.
    7. Park, Ju H., 2007. "An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 800-807.
    8. Cho, Hyun J. & Park, Ju H., 2007. "Novel delay-dependent robust stability criterion of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1194-1200.
    9. Liu, Bingwen & Huang, Lihong, 2007. "Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 211-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    2. Wang, Xiaohu & Xu, Daoyi, 2009. "Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2713-2721.
    3. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Sun, Jitao & Wang, Qing-Guo & Gao, Hanqiao, 2009. "Periodic solution for nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1423-1427.
    5. Huang, Zhenkun & Xia, Yonghui, 2009. "Exponential periodic attractor of impulsive BAM networks with finite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 373-384.
    6. Ninghua Chen, 2013. "Existence of Periodic Solutions for Shunting Inhibitory Cellular Neural Networks with Neutral Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, October.
    7. Huang, Zaitang & Yang, Qi-Gui, 2009. "Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 773-780.
    8. Xia, Yonghui & Wong, Patricia J.Y., 2009. "Global exponential stability of a class of retarded impulsive differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 440-453.
    9. Yu, Jiali & Yi, Zhang & Zhang, Lei, 2009. "Periodicity of a class of nonlinear fuzzy systems with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1343-1351.
    10. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    11. Zhao, Weirui & Zhang, Huanshui, 2009. "New results of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 831-838.
    12. Chen, Ling & Zhao, Hongyong, 2008. "Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 351-357.
    13. Ping, Zhao Wu & Lu, Jun Guo, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 164-174.
    14. Zhao, Weirui, 2009. "On existence and global exponential stability of periodic solution of two-neuron networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1100-1105.
    15. Park, Ju H. & Kwon, O.M., 2009. "Global stability for neural networks of neutral-type with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1174-1181.
    16. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    17. Zhou, Xiaobing & Wu, Yue & Li, Yi & Yao, Xun, 2009. "Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1493-1505.
    18. Li, Dong & Yang, Dan & Wang, Hui & Zhang, Xiaohong & Wang, Shilong, 2009. "Asymptotical stability of multi-delayed cellular neural networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 218-224.
    19. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    20. Xiong, Wenjun & Ma, Deyi & Liang, Jinling, 2009. "Robust convergence of Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1176-1184.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:2022-2024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.