IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i5p1599-1607.html
   My bibliography  Save this article

Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses

Author

Listed:
  • Xia, Yonghui
  • Cao, Jinde
  • Huang, Zhenkun

Abstract

In this paper, by using the contraction principle and Gronwall–Bellman’s inequality, some sufficient conditions are obtained for checking the existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks (SICNNs) with impulse. Our results are essentially new. It is the first time that the existence of almost periodic solutions for the impulsive neural networks are obtained.

Suggested Citation

  • Xia, Yonghui & Cao, Jinde & Huang, Zhenkun, 2007. "Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1599-1607.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:5:p:1599-1607
    DOI: 10.1016/j.chaos.2006.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906004358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yongkun & Xing, Wenya & Lu, Linghong, 2006. "Existence and global exponential stability of periodic solution of a class of neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 437-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huiying & Xia, Yonghui, 2008. "Existence and exponential stability of almost periodic solution for Hopfield-type neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1076-1082.
    2. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Xia, Yonghui & Wong, Patricia J.Y., 2009. "Global exponential stability of a class of retarded impulsive differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 440-453.
    4. Huang, Zaitang & Yang, Qi-Gui, 2009. "Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 773-780.
    5. Ninghua Chen, 2013. "Existence of Periodic Solutions for Shunting Inhibitory Cellular Neural Networks with Neutral Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, October.
    6. Yu, Jiali & Yi, Zhang & Zhang, Lei, 2009. "Periodicity of a class of nonlinear fuzzy systems with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1343-1351.
    7. Sun, Yeong-Jeu, 2009. "Global exponential stability criterion for uncertain discrete-time cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2022-2024.
    8. Zhao, Weirui, 2009. "On existence and global exponential stability of periodic solution of two-neuron networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1100-1105.
    9. Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.
    10. Wang, Xiaohu & Xu, Daoyi, 2009. "Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2713-2721.
    11. Huang, Zhenkun & Xia, Yonghui, 2009. "Exponential periodic attractor of impulsive BAM networks with finite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 373-384.
    12. Zhao, Weirui & Zhang, Huanshui, 2009. "New results of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 831-838.
    13. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    14. Chen, Ling & Zhao, Hongyong, 2008. "Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 351-357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    2. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    3. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    4. Peng, Dezhong & Xiang, Yong & Yi, Zhang, 2009. "A new adaptive blind channel identification algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 354-359.
    5. Huang, Zai-Tang & Yang, Qi-Gui & Luo, Xiao-shu, 2008. "Exponential stability of impulsive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 770-780.
    6. Zhou, Tiejun & Liu, Yuehua & Li, Xiaoping & Liu, Yirong, 2009. "A new criterion to global exponential periodicity for discrete-time BAM neural network with infinite delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 332-341.
    7. Sun, Jitao & Wang, Qing-Guo & Gao, Hanqiao, 2009. "Periodic solution for nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1423-1427.
    8. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    9. Mustafa Şaylı & Enes Yılmaz, 2017. "Anti-periodic solutions for state-dependent impulsive recurrent neural networks with time-varying and continuously distributed delays," Annals of Operations Research, Springer, vol. 258(1), pages 159-185, November.
    10. Zhang, Yinping, 2009. "Stationary oscillation for nonautonomous bidirectional associative memory neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1760-1763.
    11. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    12. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    13. Huang, Zhenkun & Xia, Yonghui, 2008. "Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 489-498.
    14. Mohamad, Sannay, 2007. "Exponential stability in Hopfield-type neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 456-467.
    15. Mak, K.L. & Peng, J.G. & Xu, Z.B. & Yiu, K.F.C., 2007. "A new stability criterion for discrete-time neural networks: Nonlinear spectral radius," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 424-436.
    16. Peng, Dezhong & Yi, Zhang, 2008. "Global convergence of an adaptive minor component extraction algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 550-561.
    17. Li, Kelin & Zhang, Xinhua & Li, Zuoan, 2009. "Global exponential stability of impulsive cellular neural networks with time-varying and distributed delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1427-1434.
    18. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:5:p:1599-1607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.