IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v29y2006i5p1100-1108.html
   My bibliography  Save this article

Image-processing algorithms realized by discrete-time cellular neural networks and their circuit implementations

Author

Listed:
  • Chen, Hsin-Chieh
  • Hung, Yung-Ching
  • Chen, Chang-Kuo
  • Liao, Teh-Lu
  • Chen, Chun-Kuo

Abstract

In this study, eight image tasks: connected component detection (CCD) with down, right, +45° and −45° directions, edge detection, shadow projection with left and right directions and point removal are analyzed. These tasks are solved using the binary input and binary output discrete-time cellular neural networks (DTCNNs) associated with suitable templates. Furthermore, the behavior of the DTCNNs can be realized using Boolean functions, and the corresponding equivalent logic circuits are derived. An 8×8 DTCNNs-based image-processing chip is implemented by the FPGA technology. A simulation of the chip developed for the CCD task is also presented.

Suggested Citation

  • Chen, Hsin-Chieh & Hung, Yung-Ching & Chen, Chang-Kuo & Liao, Teh-Lu & Chen, Chun-Kuo, 2006. "Image-processing algorithms realized by discrete-time cellular neural networks and their circuit implementations," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1100-1108.
  • Handle: RePEc:eee:chsofr:v:29:y:2006:i:5:p:1100-1108
    DOI: 10.1016/j.chaos.2005.08.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905007198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih, Chih-Wen & Tseng, Jui-Pin, 2009. "Global consensus for discrete-time competitive systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 302-310.
    2. Sun, Bo & Cao, Yuting & Guo, Zhenyuan & Yan, Zheng & Wen, Shiping, 2020. "Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    3. Sun, Yeong-Jeu, 2009. "Global exponential stability criterion for uncertain discrete-time cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2022-2024.
    4. Cheng, Sui Sun & Chen, Jhien-Shien & Yueh, Wen-Chyuan, 2009. "Cycles of a discrete time bipolar artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1319-1332.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:29:y:2006:i:5:p:1100-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.