IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i4p857-878.html
   My bibliography  Save this article

Cantorian spacetime and Hilbert space: Part I—Foundations

Author

Listed:
  • Iovane, G.

Abstract

We are going to show the link between the ε(∞) Cantorian space and the Hilbert spaces H(∞). In particular, El Naschie’s ε(∞) is a physical spacetime, i.e. an infinite dimensional fractal space, where time is spacialized and the transfinite nature manifests itself. El Naschie’s Cantorian spacetime is an arena where the physics laws appear at each scale in a self-similar way linked to the resolution of the act of observation. By contrast the Hilbert space H(∞) is a mathematical support, which describes the interaction between the observer and the dynamical system under measurement.

Suggested Citation

  • Iovane, G., 2006. "Cantorian spacetime and Hilbert space: Part I—Foundations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 857-878.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:4:p:857-878
    DOI: 10.1016/j.chaos.2005.08.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905006077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 39-42.
    2. El Naschie, M.S., 2005. "A new solution for the two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 935-939.
    3. El Naschie, M.S., 2005. "From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 969-977.
    4. Saniga, Metod, 2005. "On an observer-related unequivalence between spatial dimensions of a generic Cremonian universe," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1935-1939.
    5. El Naschie, M.S., 2005. "Non-Euclidean spacetime structure and the two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 1-6.
    6. Iovane, G. & Giordano, P., 2005. "Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures," Chaos, Solitons & Fractals, Elsevier, vol. 25(4), pages 879-896.
    7. El Naschie, M.S., 2006. "Hilbert space, the number of Higgs particles and the quantum two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 9-13.
    8. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    9. Iovane, G. & Gargiulo, G. & Zappale, E., 2006. "A Cantorian potential theory for describing dynamical systems on El Naschie’s space–time," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 588-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iovane, Gerardo & Giordano, Paola, 2007. "Wavelets and multiresolution analysis: Nature of ε(∞) Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 896-910.
    2. Iovane, Gerardo, 2009. "The set of prime numbers: Multiscale analysis and numeric accelerators," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1953-1965.
    3. Sidharth, B.G., 2006. "Strings and Planck oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 300-311.
    4. Iovane, G., 2007. "Hypersingular integral equations, Kähler manifolds and Thurston mirroring effect in ϵ(∞) Cantorian spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1041-1053.
    5. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    6. Giordano, P. & Iovane, G. & Laserra, E., 2007. "El Naschie ϵ(∞) Cantorian structures with spatial pseudo-spherical symmetry: A possible description of the actual segregated universe," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1108-1117.
    7. Silva, L.B.M. & Vermelho, M.V.D. & Lyra, M.L. & Viswanathan, G.M., 2009. "Multifractal detrended fluctuation analysis of analog random multiplicative processes," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2806-2811.
    8. Wang, Xiao-Feng & Gao, Hongwei & Jinshun, Feng, 2009. "The characterization of vector-valued multivariate wavelet packets associated with a dilation matrix," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1959-1966.
    9. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    10. Iovane, G. & Chinnici, M. & Tortoriello, F.S., 2008. "Multifractals and El Naschie E-infinity Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 645-658.
    11. Iovane, G., 2009. "From Menger–Urysohn to Hausdorff dimensions in high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2338-2341.
    12. Wu, Guochang & Cheng, Zhengxing & Li, Dengfeng & Zhang, Fangjuan, 2008. "Parseval frame wavelets associated with A-FMRA," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1233-1243.
    13. Guida, Michele & Maria, Funaro, 2007. "Topology of the Italian airport network: A scale-free small-world network with a fractal structure?," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 527-536.
    14. Iovane, Gerardo, 2008. "The set of prime numbers: Symmetries and supersymmetries of selection rules and asymptotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 950-961.
    15. Marek-Crnjac, L., 2008. "Lie groups hierarchy in connection with the derivation of the inverse electromagnetic fine structure constant from the number of particle-like states 548, 576 and 672," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 332-336.
    16. Llorens-Fuster, Enrique & Petruşel, Adrian & Yao, Jen-Chih, 2009. "Iterated function systems and well-posedness," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1561-1568.
    17. El Naschie, M.S., 2006. "Holographic dimensional reduction: Center manifold theorem and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 816-822.
    18. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    19. Sergeyev, Yaroslav D., 2007. "Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 50-75.
    20. Iovane, Gerardo, 2008. "The distribution of prime numbers: The solution comes from dynamical processes and genetic algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 23-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iovane, Gerardo & Giordano, Paola, 2007. "Wavelets and multiresolution analysis: Nature of ε(∞) Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 896-910.
    2. Iovane, G., 2007. "Hypersingular integral equations, Kähler manifolds and Thurston mirroring effect in ϵ(∞) Cantorian spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1041-1053.
    3. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.
    4. El Naschie, Mohamed Saladin, 2006. "The idealized quantum two-slit gedanken experiment revisited—Criticism and reinterpretation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 843-849.
    5. Agop, M. & Craciun, P., 2006. "El Naschie’s Cantorian gravity and Einstein’s quantum gravity," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 30-40.
    6. Agop, M. & Craciun, P., 2006. "El Naschie’s ε(∞) space–time and the two slit experiment in the Weyl–Dirac theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 441-452.
    7. Agop, M. & Chicos, Liliana & Nica, P., 2009. "Transport phenomena in nanostructures and non-differentiable space–time," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 803-814.
    8. Agop, M. & Vasilica, M., 2006. "El Naschie’s supergravity by means of the gravitational instantons synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 318-323.
    9. Agop, M. & Nica, P. & Ioannou, P.D. & Malandraki, Olga & Gavanas-Pahomi, I., 2007. "El Naschie’s ε(∞) space–time, hydrodynamic model of scale relativity theory and some applications," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1704-1723.
    10. Iovane, G., 2006. "Cantorian space–time and Hilbert space: Part II—Relevant consequences," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 1-22.
    11. Agop, M. & Abacioaie, D., 2007. "El Naschie’s ε(∞) space–time, interface between Weyl–Dirac bubbles and Cantorian fractal superstring," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 235-243.
    12. Buzea, C. Gh. & Agop, M. & Galusca, G. & Vizureanu, P. & Ionita, I., 2007. "El Naschie’s superconductivity in the time dependent Ginzburg–Landau model," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1060-1074.
    13. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    14. Yang, Ciann-Dong, 2007. "The origin and proof of quantization axiom p→pˆ=-iℏ∇ in complex spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 274-283.
    15. Sun, Lei & Zhang, Xiaozhong, 2009. "A note on biorthogonality of the scaling functions with arbitrary matrix dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 711-715.
    16. Iovane, Gerardo, 2009. "The set of prime numbers: Multiscale analysis and numeric accelerators," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1953-1965.
    17. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    18. EL-Nabulsi, Ahmad Rami, 2009. "Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 52-61.
    19. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    20. Sun, Lei & Li, Gang, 2009. "Generalized orthogonal multiwavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2420-2424.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:4:p:857-878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.