IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i1p9-13.html
   My bibliography  Save this article

Hilbert space, the number of Higgs particles and the quantum two-slit experiment

Author

Listed:
  • El Naschie, M.S.

Abstract

Rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space. By contrast, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we present a novel reinterpretation of basic ε(∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. In this way, we gain a better understanding of the physical and mathematical structure of quantum spacetime. In particular we show that the two-slit experiment required a definite topology which is consistent with a certain fuzzy Kähler manifold or more generally a Cantorian spacetime manifold. Finally by determining the Euler class of this manifold, we can estimate the most likely number of Higgs particles which may be discovered.

Suggested Citation

  • El Naschie, M.S., 2006. "Hilbert space, the number of Higgs particles and the quantum two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 9-13.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:9-13
    DOI: 10.1016/j.chaos.2005.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905004819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2005. "A new solution for the two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 935-939.
    2. El Naschie, M.S., 2005. "From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 969-977.
    3. El Naschie, M.S., 2005. "Non-Euclidean spacetime structure and the two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iovane, G., 2006. "Cantorian spacetime and Hilbert space: Part I—Foundations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 857-878.
    2. El Naschie, M.S., 2006. "Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 39-42.
    3. Yang, Ciann-Dong, 2007. "The origin and proof of quantization axiom p→pˆ=-iℏ∇ in complex spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 274-283.
    4. Agop, M. & Craciun, P., 2006. "El Naschie’s ε(∞) space–time and the two slit experiment in the Weyl–Dirac theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 441-452.
    5. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.
    6. Yang, Ciann-Dong & Wei, Chia-Hung, 2007. "Parameterization of all path integral trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 118-134.
    7. El Naschie, Mohamed Saladin, 2006. "The idealized quantum two-slit gedanken experiment revisited—Criticism and reinterpretation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 843-849.
    8. Agop, M. & Chicos, Liliana & Nica, P., 2009. "Transport phenomena in nanostructures and non-differentiable space–time," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 803-814.
    9. Agop, M. & Vasilica, M., 2006. "El Naschie’s supergravity by means of the gravitational instantons synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 318-323.
    10. Agop, M. & Nica, P. & Ioannou, P.D. & Malandraki, Olga & Gavanas-Pahomi, I., 2007. "El Naschie’s ε(∞) space–time, hydrodynamic model of scale relativity theory and some applications," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1704-1723.
    11. Agop, M. & Abacioaie, D., 2007. "El Naschie’s ε(∞) space–time, interface between Weyl–Dirac bubbles and Cantorian fractal superstring," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 235-243.
    12. Buzea, C. Gh. & Agop, M. & Galusca, G. & Vizureanu, P. & Ionita, I., 2007. "El Naschie’s superconductivity in the time dependent Ginzburg–Landau model," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1060-1074.
    13. Agop, M. & Craciun, P., 2006. "El Naschie’s Cantorian gravity and Einstein’s quantum gravity," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 30-40.
    14. Abu-Donia, H.M., 2007. "Common fixed point theorems for fuzzy mappings in metric space under ϕ-contraction condition," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 538-543.
    15. Azab Abd-Allah, M. & El-Saady, Kamal & Ghareeb, A., 2009. "Rough intuitionistic fuzzy subgroup," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2145-2153.
    16. Khastan, A. & Ivaz, K., 2009. "Numerical solution of fuzzy differential equations by Nyström method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 859-868.
    17. Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
    18. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    19. Falcón, Sergio & Plaza, Ángel, 2009. "On k-Fibonacci sequences and polynomials and their derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1005-1019.
    20. Sadeqi, I. & Kia, F. Solaty, 2009. "Fuzzy normed linear space and its topological structure," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2576-2589.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:9-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.