IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v30y2006i4p886-896.html
   My bibliography  Save this article

Robust stability analysis of generalized neural networks with discrete and distributed time delays

Author

Listed:
  • Wang, Zidong
  • Shu, Huisheng
  • Liu, Yurong
  • Ho, Daniel W.C.
  • Liu, Xiaohui

Abstract

This paper is concerned with the problem of robust global stability analysis for generalized neural networks (GNNs) with both discrete and distributed delays. The parameter uncertainties are assumed to be time-invariant and bounded, and belong to given compact sets. The existence of the equilibrium point is first proved under mild conditions, assuming neither differentiability nor strict monotonicity for the activation function. Then, by employing a Lyapunov–Krasovskii functional, the addressed stability analysis problem is converted into a convex optimization problem, and a linear matrix inequality (LMI) approach is utilized to establish the sufficient conditions for the globally robust stability for the GNNs, with and without parameter uncertainties. These conditions can be readily checked by utilizing the Matlab LMI toolbox. A numerical example is provided to demonstrate the usefulness of the proposed global stability condition.

Suggested Citation

  • Wang, Zidong & Shu, Huisheng & Liu, Yurong & Ho, Daniel W.C. & Liu, Xiaohui, 2006. "Robust stability analysis of generalized neural networks with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 886-896.
  • Handle: RePEc:eee:chsofr:v:30:y:2006:i:4:p:886-896
    DOI: 10.1016/j.chaos.2005.08.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905007988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jinde & Ho, Daniel W.C., 2005. "A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1317-1329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    2. Jing-Wen Yi & Yan-Wu Wang & Jiang-Wen Xiao & Yuehua Huang, 2016. "Synchronisation of complex dynamical networks with additive stochastic time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1221-1229, April.
    3. Li, Tao & Fei, Shu-min & Zhang, Kan-jian, 2008. "Synchronization control of recurrent neural networks with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 982-996.
    4. Li, Demin & Wang, Zidong & Zhou, Jie & Fang, Jian’an & Ni, Jinjin, 2008. "A note on chaotic synchronization of time-delay secure communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1217-1224.
    5. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    6. Yucel, Eylem & Arik, Sabri, 2009. "Novel results for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1604-1614.
    7. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    8. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Exponential p-stability of delayed Cohen–Grossberg-type BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 806-818.
    9. Xia, Yonghui & Wong, Patricia J.Y., 2009. "Global exponential stability of a class of retarded impulsive differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 440-453.
    10. Rakkiyappan, R. & Balasubramaniam, P., 2009. "LMI conditions for stability of stochastic recurrent neural networks with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1688-1696.
    11. Feng, Wei & Yang, Simon X. & Wu, Haixia, 2009. "On robust stability of uncertain stochastic neural networks with distributed and interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2095-2104.
    12. Wang, Zidong & Fang, Jian’an & Liu, Xiaohui, 2008. "Global stability of stochastic high-order neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 388-396.
    13. Zhou, Xiaobing & Wu, Yue & Li, Yi & Yao, Xun, 2009. "Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1493-1505.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    2. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    3. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    4. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    5. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    6. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    7. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    8. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    9. Wang, Kai & Teng, Zhidong & Jiang, Haijun, 2008. "Adaptive synchronization of neural networks with time-varying delay and distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 631-642.
    10. Singh, Vimal, 2007. "Improved global robust stability criterion for delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 224-229.
    11. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    12. Singh, Vimal, 2007. "Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 259-263.
    13. Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
    14. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.
    15. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
    16. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    17. Singh, Vimal, 2006. "Simplified LMI condition for global asymptotic stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 470-473.
    18. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    19. Singh, Vimal, 2006. "New global robust stability results for delayed cellular neural networks based on norm-bounded uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1165-1171.
    20. He, Guangming & Yang, Jingyu, 2008. "Adaptive synchronization in nonlinearly coupled dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1254-1259.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:30:y:2006:i:4:p:886-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.