IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v56y2020i4d10.1007_s10614-019-09940-9.html
   My bibliography  Save this article

Multiple Shooting Method for Solving Black–Scholes Equation

Author

Listed:
  • Somayeh Abdi-Mazraeh

    (Azarbaijan Shahid Madani University
    University of Tabriz)

  • Ali Khani

    (Azarbaijan Shahid Madani University)

  • Safar Irandoust-Pakchin

    (University of Tabriz)

Abstract

In this paper, the Black–Scholes (B–S) model for the pricing of the European and the barrier call options are considered, which yields a partial differential problem. First, A numerical technique based on Crank–Nicolson (C–N) method is used to discretisize the time domain. Consequently, the partial differential equation will be converted to a system of an ordinary differential equation (ODE). Then, the multiple shooting method combined with Lagrange polynomials is utilized to solve the ODEs. Regarding the convergence order of the approximate solution which normally decreases due to the non-smooth properties of the option’s payoff (at the strike price), in this study, the equipped C–N scheme with variable step size strategy is applied for the time discretization. As a result, the variable step size strategy prevents the error propagation by controlling the error at each time step and increases the computational speed by raising the step size in the smooth points of the domain. In order to implement the variable step size, an algorithm is presented. In addition, the stability of the presented method is analyzed. The extracted numerical results represent the accuracy and efficiency of the proposed method.

Suggested Citation

  • Somayeh Abdi-Mazraeh & Ali Khani & Safar Irandoust-Pakchin, 2020. "Multiple Shooting Method for Solving Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 723-746, December.
  • Handle: RePEc:kap:compec:v:56:y:2020:i:4:d:10.1007_s10614-019-09940-9
    DOI: 10.1007/s10614-019-09940-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09940-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09940-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golbabai, A. & Ballestra, L.V. & Ahmadian, D., 2013. "Superconvergence of the finite element solutions of the Black–Scholes equation," Finance Research Letters, Elsevier, vol. 10(1), pages 17-26.
    2. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    3. Higham,Desmond J., 2004. "An Introduction to Financial Option Valuation," Cambridge Books, Cambridge University Press, number 9780521547574, January.
    4. Rad, Jamal Amani & Parand, Kourosh & Ballestra, Luca Vincenzo, 2015. "Pricing European and American options by radial basis point interpolation," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 363-377.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangkwon Kim & Jisang Lyu & Wonjin Lee & Eunchae Park & Hanbyeol Jang & Chaeyoung Lee & Junseok Kim, 2024. "A Practical Monte Carlo Method for Pricing Equity-Linked Securities with Time-Dependent Volatility and Interest Rate," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2069-2086, May.
    2. Chaeyoung Lee & Soobin Kwak & Youngjin Hwang & Junseok Kim, 2023. "Accurate and Efficient Finite Difference Method for the Black–Scholes Model with No Far-Field Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1207-1224, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Pu & Dai, Jun, 2017. "Pricing real estate index options under stochastic interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 309-323.
    2. Luca Vincenzo Ballestra, 2018. "Fast and accurate calculation of American option prices," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 399-426, November.
    3. Kyoung-Sook Moon & Yunju Jeong & Hongjoong Kim, 2016. "An Efficient Binomial Method for Pricing Asian Options," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(2), pages 151-164.
    4. Rambeerich, N. & Tangman, D.Y. & Lollchund, M.R. & Bhuruth, M., 2013. "High-order computational methods for option valuation under multifactor models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 219-226.
    5. Jamal Amani Rad & Kourosh Parand, 2014. "Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method," Papers 1412.6064, arXiv.org.
    6. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    7. Avner Engel & Tyson R. Browning, 2008. "Designing systems for adaptability by means of architecture options," Systems Engineering, John Wiley & Sons, vol. 11(2), pages 125-146, June.
    8. Foad Shokrollahi, 2017. "Fractional delta hedging strategy for pricing currency options with transaction costs," Papers 1702.00037, arXiv.org.
    9. Xiang Wang & Jessica Li & Jichun Li, 2023. "A Deep Learning Based Numerical PDE Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 149-164, June.
    10. A. Golbabai & E. Mohebianfar, 2017. "A New Stable Local Radial Basis Function Approach for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 271-288, February.
    11. Melek AKSU & Şakir SAKARYA, 2018. "Pricing of Covered Warrants: An Analysis on Borsa İstanbul," Sosyoekonomi Journal, Sosyoekonomi Society.
    12. Wei, Dongming & Erlangga, Yogi Ahmad & Zhumakhanova, Gulzat, 2024. "A finite element approach to the numerical solutions of Leland’s model," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 582-593.
    13. Seda Gulen & Catalin Popescu & Murat Sari, 2019. "A New Approach for the Black–Scholes Model with Linear and Nonlinear Volatilities," Mathematics, MDPI, vol. 7(8), pages 1-14, August.
    14. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    15. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    16. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    17. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    18. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    19. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    20. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:56:y:2020:i:4:d:10.1007_s10614-019-09940-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.