Explicit exact solutions of some nonlinear evolution equations with their geometric interpretations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2014.11.046
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- El-Ganaini, Shoukry & Kumar, Hitender, 2020. "A variety of new traveling and localized solitary wave solutions of a nonlinear model describing the nonlinear low- pass electrical transmission lines," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Cosgun, Tahir & Sari, Murat, 2020. "Traveling wave solutions and stability behaviours under advection dominance for singularly perturbed advection-diffusion-reaction processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Somayeh Abdi-Mazraeh & Ali Khani & Safar Irandoust-Pakchin, 2020. "Multiple Shooting Method for Solving Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 723-746, December.
- Duan, Yali & Kong, Linghua & Zhang, Rui, 2012. "A lattice Boltzmann model for the generalized Burgers–Huxley equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 625-632.
- Korkut, Sıla Övgü, 2023. "An accurate and efficient numerical solution for the generalized Burgers–Huxley equation via Taylor wavelets method: Qualitative analyses and Applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 324-341.
More about this item
Keywords
Simplest equation method; Traveling wave solution; Bernoulli equation; Geometric interpretation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:243-252. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.