IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v118y2019icp320-327.html
   My bibliography  Save this article

Nonlinear dust-acoustic waves due to the interaction of streaming protons and electrons with dusty plasma

Author

Listed:
  • Mahmoud, Abeer A.
  • Tolba, R.E.

Abstract

The dust-acoustic nonlinear shock like, periodical and solitary waves are inspected in dusty plasma with positive charge that interacts with streaming protons and electrons from solar wind. The evolution equation is solved using Homotopy perturbation transform method and different nonlinear solutions are obtained. The dependence of the shock like, periodical, and solitary wave profiles on the kappa distribution parameters (ki for ions and ke for electrons), ratio between the dust temperatures and effective temperature σd are studied. The present model is of interest to realize various nonlinear waves those may propagate in the magnetosphere of Jupiter.

Suggested Citation

  • Mahmoud, Abeer A. & Tolba, R.E., 2019. "Nonlinear dust-acoustic waves due to the interaction of streaming protons and electrons with dusty plasma," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 320-327.
  • Handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:320-327
    DOI: 10.1016/j.chaos.2018.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918307318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    3. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    4. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    5. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    6. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    7. Tariq, Kalim U. & Bekir, Ahmet & Nisar, Sana, 2023. "The dynamical structures of the Sharma–Tasso–Olver model in doubly dispersive medium," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    9. Jiong Weng & Xiaojing Liu & Youhe Zhou & Jizeng Wang, 2021. "A Space-Time Fully Decoupled Wavelet Integral Collocation Method with High-Order Accuracy for a Class of Nonlinear Wave Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    10. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    11. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    12. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Alipanah, Amjad & Zafari, Mahnaz, 2023. "Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    15. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    16. Yu, Guo-Fu & Tam, Hon-Wah, 2006. "Conservation laws for two (2+1)-dimensional differential–difference systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 189-196.
    17. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    18. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    19. Keramati, B., 2009. "An approach to the solution of linear system of equations by He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 152-156.
    20. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:118:y:2019:i:c:p:320-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.