IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v30y2006i4p903-908.html
   My bibliography  Save this article

Global synchronization of a class of delayed complex networks

Author

Listed:
  • Li, Ping
  • Yi, Zhang
  • Zhang, Lei

Abstract

Global synchronization of a class of complex networks with time-varying delays is investigated in this paper. Some sufficient conditions are derived. These conditions show that the synchronization of delayed complex networks can be determined by their topologies. In addition, these conditions are simply represented in terms of the networks coupling matrix and are easy to be checked. A typical example of complex networks with chaotic nodes is employed to illustrate the obtained global synchronization results.

Suggested Citation

  • Li, Ping & Yi, Zhang & Zhang, Lei, 2006. "Global synchronization of a class of delayed complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 903-908.
  • Handle: RePEc:eee:chsofr:v:30:y:2006:i:4:p:903-908
    DOI: 10.1016/j.chaos.2005.08.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905008039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Masoller, Cristina & Zanette, nindexDamianDamia’an H., 2001. "Anticipated synchronization in coupled chaotic maps with delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 359-366.
    3. Masoller, Cristina & Martı́, Arturo C & Zanette, Damián H, 2003. "Synchronization in an array of globally coupled maps with delayed interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(1), pages 186-191.
    4. Lü, Jinhu & Yu, Xinghuo & Chen, Guanrong, 2004. "Chaos synchronization of general complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 281-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Posadas-Castillo, C. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2009. "Experimental realization of synchronization in complex networks with Chua’s circuits like nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1963-1975.
    2. Xia, Yongxiang & Liu, Nianjun & Iu, Herbert H.C., 2009. "Oscillation and chaos in a deterministic traffic network," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1700-1704.
    3. Liu, Tao & Zhao, Jun & Hill, David J., 2009. "Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1506-1519.
    4. Wu, Zhaoyan, 2015. "Synchronization of discrete dynamical networks with non-delayed and delayed coupling," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 57-62.
    5. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
    2. Fei Wang & Zhaowen Zheng & Yongqing Yang, 2019. "Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method," Complexity, Hindawi, vol. 2019, pages 1-17, December.
    3. Lei, Lixing & Yang, Junzhong, 2021. "Patterns in coupled FitzHugh–Nagumo model on duplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Liu, Xiwei & Chen, Tianping, 2007. "Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 82-92.
    5. Liu, Tao & Dimirovski, Georgi M. & Zhao, Jun, 2008. "Exponential synchronization of complex delayed dynamical networks with general topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 643-652.
    6. Yang, Li-xin & Jiang, Jun, 2018. "Synchronization analysis of fractional order drive-response networks with in-commensurate orders," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 47-52.
    7. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
    8. He, Guangming & Yang, Jingyu, 2008. "Adaptive synchronization in nonlinearly coupled dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1254-1259.
    9. Yang, Yong & Tu, Lilan & Li, Kuanyang & Guo, Tianjiao, 2019. "Optimized inter-structure for enhancing the synchronizability of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 310-318.
    10. Wu, Jianshe & Jiao, Licheng, 2007. "Synchronization in complex delayed dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 513-530.
    11. Du, Hongyue, 2011. "Function projective synchronization in drive–response dynamical networks with non-identical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 510-514.
    12. Guan, Zhi-Hong & Zhang, Hao, 2008. "Stabilization of complex network with hybrid impulsive and switching control," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1372-1382.
    13. Wu, Jianshe & Jiao, Licheng, 2007. "Observer-based synchronization in complex dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 469-480.
    14. Liu, Tao & Zhao, Jun & Hill, David J., 2009. "Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1506-1519.
    15. Zhou, Jin & Lu, Jun-an, 2007. "Topology identification of weighted complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 481-491.
    16. Wu, Xiaoqun, 2008. "Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 997-1008.
    17. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    18. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    19. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    20. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:30:y:2006:i:4:p:903-908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.