Synchronization in an array of linearly stochastically coupled networks with time delays
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2007.06.043
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lü, Jinhu & Yu, Xinghuo & Chen, Guanrong, 2004. "Chaos synchronization of general complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 281-302.
- Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
- Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
- Li, C.P. & Sun, W.G. & Kurths, J., 2006. "Synchronization of complex dynamical networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 24-34.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Yu & Feng, Zhi Guo & Yang, Xinsong & Alsaadi, Fuad E. & Ahmad, Bashir, 2018. "Finite-time stabilization for a class of nonlinear systems via optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 14-26.
- Qing Guo & Fangyi Wan, 2017. "Complete synchronization of the global coupled dynamical network induced by Poisson noises," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-11, December.
- Hu, Xiaohui & Xia, Jianwei & Wei, Yunliang & Meng, Bo & Shen, Hao, 2019. "Passivity-based state synchronization for semi-Markov jump coupled chaotic neural networks with randomly occurring time delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 32-41.
- Xie, Qian & Si, Gangquan & Zhang, Yanbin & Yuan, Yiwei & Yao, Rui, 2016. "Finite-time synchronization and identification of complex delayed networks with Markovian jumping parameters and stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 35-49.
- Tseng, Jui-Pin, 2016. "A novel approach to synchronization of nonlinearly coupled network systems with delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 266-280.
- Yang, Xinsong & Huang, Chuangxia & Zhu, Quanxin, 2011. "Synchronization of switched neural networks with mixed delays via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 817-826.
- Zhang, Chuan & Wang, Xingyuan & Luo, Chao & Li, Junqiu & Wang, Chunpeng, 2018. "Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 251-264.
- Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Zhang, Hai & Ye, Miaolin & Ye, Renyu & Cao, Jinde, 2018. "Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 155-165.
- Djeundam, S.R. Dtchetgnia & Filatrella, G. & Yamapi, R., 2018. "Desynchronization effects of a current-driven noisy Hindmarsh–Rose neural network," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 204-211.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
- Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
- Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Synchronization in complex delayed dynamical networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 684-692.
- Feng, Jianwen & Yang, Pan & Zhao, Yi, 2016. "Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 52-68.
- Liang, Song & Wu, Ranchao & Chen, Liping, 2016. "Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 49-62.
- He, Guangming & Yang, Jingyu, 2008. "Adaptive synchronization in nonlinearly coupled dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1254-1259.
- Li, Ping & Cao, Jinde & Wang, Zidong, 2007. "Robust impulsive synchronization of coupled delayed neural networks with uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 261-272.
- Liu, Tao & Zhao, Jun & Hill, David J., 2009. "Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1506-1519.
- Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
- J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
- Wu, Jianshe & Jiao, Licheng, 2008. "Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2111-2119.
- Liu, Z.X. & Chen, Z.Q. & Yuan, Z.Z., 2007. "Pinning control of weighted general complex dynamical networks with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 345-354.
- Tri Tran & Q. P. Ha, 2014. "Decentralized Model Predictive Control for Networks of Linear Systems with Coupling Delay," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 933-950, June.
- Yang, Yong & Tu, Lilan & Li, Kuanyang & Guo, Tianjiao, 2019. "Optimized inter-structure for enhancing the synchronizability of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 310-318.
- Wu, Jianshe & Jiao, Licheng, 2007. "Synchronization in complex delayed dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 513-530.
- Du, Hongyue, 2011. "Function projective synchronization in drive–response dynamical networks with non-identical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 510-514.
- Guan, Zhi-Hong & Zhang, Hao, 2008. "Stabilization of complex network with hybrid impulsive and switching control," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1372-1382.
- Yun Wang, Qing & Rong Chen, Guan & Shao Lu, Qi & Hao, Fei, 2007. "Novel criteria of synchronization stability in complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 527-536.
- Wu, Jianshe & Jiao, Licheng, 2007. "Observer-based synchronization in complex dynamical networks with nonsymmetric coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 469-480.
- Zhang, Chuan & Wang, Xingyuan & Luo, Chao & Li, Junqiu & Wang, Chunpeng, 2018. "Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 251-264.
More about this item
Keywords
Stochastic coupling; Adaptive synchronization; Mean square asymptotic stability; LaSalle invariance principle; Delayed neural networks; Coupling delay;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:718-728. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.