IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v33y2007i2p479-491.html
   My bibliography  Save this article

Solitary wave interactions of the GRLW equation

Author

Listed:
  • Ramos, J.I.

Abstract

An approximate quasilinearization method for the solution of the generalized regularized long-wave (GRLW) equation based on the separation of the temporal and spatial derivatives, three-point, fourth-order accurate, compact difference equations, is presented. The method results in a system of linear equations with tridiagonal matrices, and is applied to determine the effects of the parameters of the GRLW equation and initial conditions on the formation of undular bores and interactions/collisions between two solitary waves. It is shown that the method preserves very accurately the first two invariants of the GRLW equation, the formation of secondary waves is a strong function of the amplitude and width of the initial Gaussian conditions, and the collision between two solitary waves is a strong function of the parameters that appear in the GRLW equation and the amplitude and speed of the initial conditions. It is also shown that the steepening of the leading and trailing waves may result in the formation of multiple secondary waves and/or an undular bore; the former interacts with the trailing solitary wave which may move parallel to or converge onto the leading solitary wave.

Suggested Citation

  • Ramos, J.I., 2007. "Solitary wave interactions of the GRLW equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 479-491.
  • Handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:479-491
    DOI: 10.1016/j.chaos.2006.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790600052X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Danaf, Talaat S. & Ramadan, Mohamed A. & Abd Alaal, Faysal E.I., 2005. "The use of adomian decomposition method for solving the regularized long-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 747-757.
    2. Soliman, A.A., 2005. "Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(2), pages 119-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demiray, Hilmi, 2009. "Head-on-collision of nonlinear waves in a fluid of variable viscosity contained in an elastic tube," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1578-1586.
    2. Raslan, K.R., 2009. "Numerical study of the Modified Regularized Long Wave (MRLW) equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1845-1853.
    3. Karakoç, S. Battal Gazi & Zeybek, Halil, 2016. "Solitary-wave solutions of the GRLW equation using septic B-spline collocation method," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 159-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, J.I., 2007. "Solitary waves of the EW and RLW equations," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1498-1518.
    2. Hammad, D.A. & El-Azab, M.S., 2016. "Chebyshev–Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 228-240.
    3. Tajvidi, T. & Razzaghi, M. & Dehghan, M., 2008. "Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 59-66.
    4. Elgazery, Nasser S., 2008. "Numerical solution for the Falkner–Skan equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 738-746.
    5. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    6. Soliman, A.A., 2009. "On the solution of two-dimensional coupled Burgers’ equations by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1146-1155.
    7. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    8. Ali, A.H.A. & Raslan, K.R., 2009. "Variational iteration method for solving partial differential equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1520-1529.
    9. Abdel-Halim Hassan, I.H., 2008. "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 53-65.
    10. Gao, Fuzheng & Qiao, Feng & Rui, Hongxing, 2015. "Numerical simulation of the modified regularized long wave equation by split least-squares mixed finite element method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 64-73.
    11. Li, Qi & Mei, Liquan, 2018. "Local momentum-preserving algorithms for the GRLW equation," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 77-92.
    12. Yuzhen Chai & Tingting Jia & Huiqin Hao & Jianwen Zhang, 2014. "Exp-Function Method for a Generalized MKdV Equation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-8, May.
    13. Raslan, K.R., 2009. "Numerical study of the Modified Regularized Long Wave (MRLW) equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1845-1853.
    14. Hammad, D.A. & El-Azab, M.S., 2015. "A 2N order compact finite difference method for solving the generalized regularized long wave (GRLW) equation," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 248-261.
    15. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    16. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    17. Karakoç, S. Battal Gazi & Zeybek, Halil, 2016. "Solitary-wave solutions of the GRLW equation using septic B-spline collocation method," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 159-171.
    18. Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.
    19. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    20. Wang, Yue-yue & Dai, Chao-qing & Wu, Lei & Zhang, Jie-fang, 2007. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1208-1214.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:479-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.