IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i1p421-425.html
   My bibliography  Save this article

Contractivity properties of a class of linear multistep methods for nonlinear neutral delay differential equations

Author

Listed:
  • Wang, Wansheng
  • Li, Shoufu
  • Wang, Wenqiang

Abstract

In this paper, we show that under identical conditions which guarantee the contractivity of the theoretical solutions of general nonlinear NDDEs, the numerical solutions obtained by a class of linear multistep methods are also contractive.

Suggested Citation

  • Wang, Wansheng & Li, Shoufu & Wang, Wenqiang, 2009. "Contractivity properties of a class of linear multistep methods for nonlinear neutral delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 421-425.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:421-425
    DOI: 10.1016/j.chaos.2007.07.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907005966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.07.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H. & Kwon, O.M., 2008. "Stability analysis of certain nonlinear differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 450-453.
    2. Bellen, Alfredo & Zennaro, Marino, 2003. "Numerical Methods for Delay Differential Equations," OUP Catalogue, Oxford University Press, number 9780198506546.
    3. Xiong, Wenjun & Liang, Jinling, 2007. "Novel stability criteria for neutral systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1735-1741.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zengqiang & Zhang, Chengjian, 2022. "Numerical approximation to semi-linear stiff neutral equations via implicit–explicit general linear methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 68-87.
    2. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    4. Amat, Sergio & José Legaz, M. & Pedregal, Pablo, 2015. "A variable step-size implementation of a variational method for stiff differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 49-57.
    5. Tian, Junkang & Xiong, Lianglin & Liu, Jianxing & Xie, Xiangjun, 2009. "Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1858-1866.
    6. García, M.A. & Castro, M.A. & Martín, J.A. & Rodríguez, F., 2018. "Exact and nonstandard numerical schemes for linear delay differential models," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 337-345.
    7. M. Motawi Khashan & Rohul Amin & Muhammed I. Syam, 2019. "A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet," Mathematics, MDPI, vol. 7(6), pages 1-12, June.
    8. Olaf Posch & Timo Trimborn, 2010. "Numerical solution of continuous-time DSGE models under Poisson uncertainty," Economics Working Papers 2010-08, Department of Economics and Business Economics, Aarhus University.
    9. Tan, Zengqiang & Zhang, Chengjian, 2018. "Implicit-explicit one-leg methods for nonlinear stiff neutral equations," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 196-210.
    10. Qiu, Fang & Cui, Baotong & Ji, Yan, 2009. "Novel robust stability analysis for uncertain neutral system with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1820-1828.
    11. Watcharin Chartbupapan & Ovidiu Bagdasar & Kanit Mukdasai, 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation," Mathematics, MDPI, vol. 8(1), pages 1-10, January.
    12. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "New robust stability condition for uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1073-1079.
    13. Zhang, G.L. & Song, Minghui & Liu, M.Z., 2015. "Asymptotical stability of the exact solutions and the numerical solutions for a class of impulsive differential equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 12-21.
    14. V. Subburayan & N. Ramanujam, 2013. "An Initial Value Technique for Singularly Perturbed Convection–Diffusion Problems with a Negative Shift," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 234-250, July.
    15. Kürkçü, Ömür Kıvanç & Aslan, Ersin & Sezer, Mehmet, 2016. "A numerical approach with error estimation to solve general integro-differential–difference equations using Dickson polynomials," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 324-339.
    16. Xu, Y. & Zhao, J.J. & Sui, Z.N., 2010. "Exponential Runge–Kutta methods for delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2350-2361.
    17. Berezansky, Leonid & Braverman, Elena, 2019. "On stability of linear neutral differential equations in the Hale form," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 63-71.
    18. Janejira Tranthi & Thongchai Botmart & Wajaree Weera & Piyapong Niamsup, 2019. "A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays," Mathematics, MDPI, vol. 7(8), pages 1-18, August.
    19. Öcalan, Özkan & Duman, Oktay, 2009. "Oscillation analysis of neutral difference equations with delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 261-270.
    20. Ashwin Aravindakshan & Prasad Naik, 2011. "How does awareness evolve when advertising stops? The role of memory," Marketing Letters, Springer, vol. 22(3), pages 315-326, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:421-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.