IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v36y2008i1p98-103.html
   My bibliography  Save this article

Chaos in the Newton–Leipnik system with fractional order

Author

Listed:
  • Sheu, Long-Jye
  • Chen, Hsien-Keng
  • Chen, Juhn-Horng
  • Tam, Lap-Mou
  • Chen, Wen-Chin
  • Lin, Kuang-Tai
  • Kang, Yuan

Abstract

The dynamics of fractional-order systems has attracted increasing attention in recent years. In this paper, the dynamics of the Newton–Leipnik system with fractional order was studied numerically. The system displays many interesting dynamic behaviors, such as fixed points, periodic motions, chaotic motions, and transient chaos. It was found that chaos exists in the fractional-order system with order less than 3. In this study, the lowest order for this system to yield chaos is 2.82. A period-doubling route to chaos in the fractional-order system was also found.

Suggested Citation

  • Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
  • Handle: RePEc:eee:chsofr:v:36:y:2008:i:1:p:98-103
    DOI: 10.1016/j.chaos.2006.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790600587X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    2. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    3. Wang, Xuedi & Tian, Lixin, 2006. "Bifurcation analysis and linear control of the Newton–Leipnik system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 31-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mekoth, Chitra & George, Santhosh & Jidesh, P., 2021. "Fractional Tikhonov regularization method in Hilbert scales," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Deshpande, Amey S. & Daftardar-Gejji, Varsha, 2017. "On disappearance of chaos in fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 119-126.
    3. Yifan Zhang & Tianzeng Li & Zhiming Zhang & Yu Wang, 2022. "Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes," Mathematics, MDPI, vol. 10(11), pages 1-22, June.
    4. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    5. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    6. Baishya, Chandrali & Premakumari, R.N. & Samei, Mohammad Esmael & Naik, Manisha Krishna, 2023. "Chaos control of fractional order nonlinear Bloch equation by utilizing sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Gao, Yuan & Liang, Chenghua & Wu, Qiqi & Yuan, Haiying, 2015. "A new fractional-order hyperchaotic system and its modified projective synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 190-204.
    8. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    9. Luo, Chuanwen & Wang, Gang & Wang, Chuncheng & Wei, Junjie, 2009. "A new interpretation of chaos," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1294-1300.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    2. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    3. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    4. Lu, Jun Guo, 2006. "Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 107-118.
    5. Huang, Xiuqi & Wang, Xiangjun, 2021. "Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    6. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    7. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou, 2007. "Chaos in a new system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1203-1212.
    8. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    9. Sharma, Vivek & Shukla, Manoj & Sharma, B.B., 2018. "Unknown input observer design for a class of fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 96-107.
    10. Lu, Jun Guo, 2005. "Chaotic dynamics and synchronization of fractional-order Arneodo’s systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1125-1133.
    11. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    12. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    13. Chen, Juhn-Horng & Chen, Wei-Ching, 2008. "Chaotic dynamics of the fractionally damped van der Pol equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 188-198.
    14. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    15. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    16. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    17. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    18. Zheng, Yongai & Ji, Zhilin, 2016. "Predictive control of fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 307-313.
    19. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Gao, Xin & Yu, Juebang, 2005. "Synchronization of two coupled fractional-order chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 141-145.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:36:y:2008:i:1:p:98-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.