IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i2p468-470.html
   My bibliography  Save this article

On the topological ground state of E-infinity spacetime and the super string connection

Author

Listed:
  • El Naschie, M.S.

Abstract

There are at present a huge number of valid super string ground states, making the one corresponding to our own universe extremely hard to determine. Therefore it may come as quite a surprise that it is a rather simple undertaking to determine the exact topological ground state of E-infinity Cantorian spacetime theory. Similar to the ground state of the Higgs for E-infinity, the expectation value of the topological ground state is non-zero and negative. Its value is given exactly by ∑o-∞n(1/ϕ)n=-(4+ϕ3) where ϕ=(5-1)/2 and n represents an integer Menger–Uhryson dimension running from n=0 to n=−∞. Recalling that the average dimension of ε(∞) is given by ∼〈n〉=4+ϕ3, one could interpret this result as saying that our E-infinity spacetime may be viewed as an in itself closed manifold given by the remarkable equation:〈D(topological vacuum)〉+〈D(Hausdorff of spacetime)〉=zeroThus in a manner of speaking, the universe could have spontaneously tunnelled into existence from virtual nothingness.

Suggested Citation

  • El Naschie, M.S., 2007. "On the topological ground state of E-infinity spacetime and the super string connection," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 468-470.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:2:p:468-470
    DOI: 10.1016/j.chaos.2006.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906008186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Naschie, M.S., 2007. "On gauge invariance, dissipative quantum mechanics and self-adjoint sets," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 271-273.
    2. Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
    3. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    4. Gottlieb, I. & Agop, M. & Enache, V., 2009. "Games with Cantor’s dust," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 940-945.
    5. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    6. Ekici, Erdal, 2008. "Generalization of weakly clopen and strongly θ-b-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 79-88.
    7. Allam, A.A. & Bakeir, M.Y. & Abo-Tabl, E.A., 2009. "Product space and the digital plane via relations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 764-771.
    8. Khrennikov, Andrei Yu., 2009. "Gene expression from polynomial dynamics in the 2-adic information space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 341-347.
    9. Agop, M. & Paun, V. & Harabagiu, Anca, 2008. "El Naschie’s ε(∞) theory and effects of nanoparticle clustering on the heat transport in nanofluids," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1269-1278.
    10. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.
    11. Kılıç, Emrah, 2009. "The generalized Pell (p,i)-numbers and their Binet formulas, combinatorial representations, sums," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2047-2063.
    12. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Design and characterizations of a class of orthogonal multiple vector-valued wavelets with 4-scale," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 91-102.
    13. Dai, Meifeng & Tian, Lixin, 2008. "On the intersection of an m-part uniform Cantor set with its rational translation," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 962-969.
    14. Liu, Cheng-shi, 2009. "Nonsymmetric entropy and maximum nonsymmetric entropy principle," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2469-2474.
    15. Elmali, Ceren Sultan & Uğur, Tamer, 2009. "Fan-Gottesman compactification of some specific spaces is Wallman-type compactification," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 17-19.
    16. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    17. Kilic, E. & Stakhov, A.P., 2009. "On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2210-2221.
    18. Ekici, Erdal & Noiri, Takashi, 2009. "Decompositions of continuity, α-continuity and AB-continuity," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2055-2061.
    19. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    20. Ekici, Erdal, 2009. "A note on almost β-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1010-1013.
    21. Agop, M. & Chicos, Liliana & Nica, P., 2009. "Transport phenomena in nanostructures and non-differentiable space–time," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 803-814.
    22. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:2:p:468-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.