IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i4p1890-1906.html
   My bibliography  Save this article

On the m-extension of the Fibonacci and Lucas p-numbers

Author

Listed:
  • Kocer, E. Gokcen
  • Tuglu, Naim
  • Stakhov, Alexey

Abstract

In this article, we define the m-extension of the Fibonacci and Lucas p-numbers (p⩾0 is integer and m>0 is real number) from which, specifying p and m, classic Fibonacci and Lucas numbers (p=1, m=1), Pell and Pell–Lucas numbers (p=1, m=2), Fibonacci and Lucas p-numbers (m=1), Fibonacci m-numbers (p=1), Pell and Pell–Lucas p-numbers (m=2) are obtained. Afterwards, we obtain the continuous functions for the m-extension of the Fibonacci and Lucas p-numbers using the generalized Binet formulas. Also we introduce in the article a new class of mathematical constants – the Golden (p,m)-Proportions, which are a wide generalization of the classical golden mean, the golden p-proportions and the golden m-proportions. The article is of fundamental interest for theoretical physics where Fibonacci numbers and the golden mean are used widely.

Suggested Citation

  • Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1890-1906
    DOI: 10.1016/j.chaos.2007.09.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907008181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stakhov, Alexey & Rozin, Boris, 2006. "The continuous functions for the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1014-1025.
    2. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    3. Stakhov, Alexey & Rozin, Boris, 2005. "The Golden Shofar," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 677-684.
    4. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    5. Falcón, Sergio & Plaza, Ángel, 2008. "The k-Fibonacci hyperbolic functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 409-420.
    6. El Naschie, M.S., 2007. "On the topological ground state of E-infinity spacetime and the super string connection," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 468-470.
    7. Stakhov, Alexey & Rozin, Boris, 2006. "Theory of Binet formulas for Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1162-1177.
    8. Stakhov, Alexey, 2006. "Fundamentals of a new kind of mathematics based on the Golden Section," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1124-1146.
    9. El Naschie, M.S., 2007. "From symmetry to particles," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 427-430.
    10. El Naschie, M.S., 2007. "Hilbert space, Poincaré dodecahedron and golden mean transfiniteness," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 787-793.
    11. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    12. Stakhov, A.P., 2005. "The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 263-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Gokcen Kocer & Huriye Alsan, 2022. "Generalized Hybrid Fibonacci and Lucas p-numbers," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 948-955, December.
    2. Ivana Matoušová & Pavel Trojovský, 2020. "On Coding by (2, q )-Distance Fibonacci Numbers," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    3. Fiorenza, Alberto & Vincenzi, Giovanni, 2011. "Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 145-152.
    4. Esmaeili, M. & Gulliver, T.A. & Kakhbod, A., 2009. "The Golden mean, Fibonacci matrices and partial weakly super-increasing sources," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 435-440.
    5. Florek, Wojciech, 2018. "A class of generalized Tribonacci sequences applied to counting problems," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 809-821.
    6. Hatir, E. & Noiri, T., 2009. "On δ–β-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 205-211.
    7. Ilija Tanackov & Ivan Pavkov & Željko Stević, 2020. "The New New-Nacci Method for Calculating the Roots of a Univariate Polynomial and Solution of Quintic Equation in Radicals," Mathematics, MDPI, vol. 8(5), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    2. Ekici, Erdal & Noiri, Takashi, 2009. "Decompositions of continuity, α-continuity and AB-continuity," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2055-2061.
    3. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    4. Falcón, Sergio & Plaza, Ángel, 2009. "On k-Fibonacci sequences and polynomials and their derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1005-1019.
    5. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    6. Kılıç, Emrah, 2009. "The generalized Pell (p,i)-numbers and their Binet formulas, combinatorial representations, sums," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2047-2063.
    7. Kilic, E. & Stakhov, A.P., 2009. "On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2210-2221.
    8. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    9. Falcón, Sergio & Plaza, Ángel, 2008. "The k-Fibonacci hyperbolic functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 409-420.
    10. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.
    11. Ekici, Erdal, 2009. "A note on almost β-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1010-1013.
    12. Nalli, Ayse & Haukkanen, Pentti, 2009. "On generalized Fibonacci and Lucas polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3179-3186.
    13. Ekici, Erdal, 2008. "Generalization of weakly clopen and strongly θ-b-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 79-88.
    14. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    15. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    16. Stakhov, Alexey, 2007. "The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 315-334.
    17. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    18. Agop, M. & Paun, V. & Harabagiu, Anca, 2008. "El Naschie’s ε(∞) theory and effects of nanoparticle clustering on the heat transport in nanofluids," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1269-1278.
    19. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.
    20. Stakhov, A.P., 2007. "The “golden” matrices and a new kind of cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1138-1146.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1890-1906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.