IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i1p341-347.html
   My bibliography  Save this article

Gene expression from polynomial dynamics in the 2-adic information space

Author

Listed:
  • Khrennikov, Andrei Yu.

Abstract

We perform geometrization of genetics by representing genetic information by points of the 4-adic information space. By well known theorem of number theory this space can also be represented as the 2-adic space. The process of DNA-reproduction is described by the action of a 4-adic (or equivalently 2-adic) dynamical system. As we know, the genes contain information for production of proteins. The genetic code is a degenerate map of codons to proteins. We model this map as functioning of a polynomial dynamical system. The purely mathematical problem under consideration is to find a dynamical system reproducing the degenerate structure of the genetic code. We present one of possible solutions of this problem.

Suggested Citation

  • Khrennikov, Andrei Yu., 2009. "Gene expression from polynomial dynamics in the 2-adic information space," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 341-347.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:341-347
    DOI: 10.1016/j.chaos.2008.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908005444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    2. El Naschie, M.S., 2006. "Topics in the mathematical physics of E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 656-663.
    3. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    4. Andrie Khrennikov, 2000. "p -Adic discrete dynamical systems and collective behaviour of information states in cognitive models," Discrete Dynamics in Nature and Society, Hindawi, vol. 5, pages 1-11, January.
    5. Khrennikov, A.Yu. & Kozyrev, S.V., 2007. "Genetic code on the diadic plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 265-272.
    6. Khrennikov, A.Yu. & Kozyrev, S.V., 2006. "Replica symmetry breaking related to a general ultrametric space—II: RSB solutions and the n→0 limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 241-266.
    7. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    8. El Naschie, M.S., 2007. "On the topological ground state of E-infinity spacetime and the super string connection," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 468-470.
    9. Khrennikov, A.Yu. & Kozyrev, S.V., 2006. "Replica symmetry breaking related to a general ultrametric space I: Replica matrices and functionals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 222-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    2. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    3. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    4. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.
    5. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.
    6. Ekici, Erdal, 2009. "A note on almost β-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1010-1013.
    7. Elmali, Ceren Sultan & Uğur, Tamer, 2009. "Fan-Gottesman compactification of some specific spaces is Wallman-type compactification," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 17-19.
    8. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Design and characterizations of a class of orthogonal multiple vector-valued wavelets with 4-scale," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 91-102.
    9. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    10. Zúñiga-Galindo, W.A., 2023. "p-adic statistical field theory and deep belief networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    11. Alimohammady, Mohsen & Esmaeli, Abdolreza & Saadati, Reza, 2009. "Completeness results in probabilistic metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 765-769.
    12. Ekici, Erdal & Noiri, Takashi, 2009. "Decompositions of continuity, α-continuity and AB-continuity," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2055-2061.
    13. Ekici, Erdal, 2008. "Generalization of weakly clopen and strongly θ-b-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 79-88.
    14. Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
    15. Khrennikov, A.Yu. & Kozyrev, S.V., 2007. "Replica symmetry breaking related to a general ultrametric space III: The case of general measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 283-298.
    16. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    17. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    18. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    19. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    20. Sadeghi, J. & Pahlavani, M. & Emadi, A., 2008. "The group SO(4) and generalized function," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 308-312.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:341-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.