IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i5p1248-1255.html
   My bibliography  Save this article

Numerical comparison of methods for solving linear differential equations of fractional order

Author

Listed:
  • Momani, Shaher
  • Odibat, Zaid

Abstract

In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear differential equations of fractional order. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. This paper will present a numerical comparison between the two methods and a conventional method such as the fractional difference method for solving linear differential equations of fractional order. The numerical results demonstrates that the new methods are quite accurate and readily implemented.

Suggested Citation

  • Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:5:p:1248-1255
    DOI: 10.1016/j.chaos.2005.10.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905010374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.10.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xin & Yu, Juebang, 2005. "Synchronization of two coupled fractional-order chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 141-145.
    2. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    3. Lu, Jun Guo, 2005. "Chaotic dynamics and synchronization of fractional-order Arneodo’s systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1125-1133.
    4. Momani, Shaher & Abuasad, Salah, 2006. "Application of He’s variational iteration method to Helmholtz equation," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1119-1123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Lan, 2009. "The variational iteration method for fourth order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1386-1394.
    2. Roman Parovik, 2020. "Mathematical Modeling of Linear Fractional Oscillators," Mathematics, MDPI, vol. 8(11), pages 1-26, October.
    3. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    4. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    5. Rehman, Mujeeb ur & Idrees, Amna & Saeed, Umer, 2017. "A quadrature method for numerical solutions of fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 38-49.
    6. Rashid Nawaz & Laiq Zada & Abraiz Khattak & Muhammad Jibran & Adam Khan, 2019. "Optimum Solutions of Fractional Order Zakharov–Kuznetsov Equations," Complexity, Hindawi, vol. 2019, pages 1-9, December.
    7. Yu, Yongguang & Li, Han-Xiong, 2009. "Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2330-2337.
    8. Odibat, Zaid, 2020. "An optimized decomposition method for nonlinear ordinary and partial differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. Tomar, Saurabh & Singh, Mehakpreet & Vajravelu, Kuppalapalle & Ramos, Higinio, 2023. "Simplifying the variational iteration method: A new approach to obtain the Lagrange multiplier," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 640-644.
    10. Soliman, A.A., 2009. "On the solution of two-dimensional coupled Burgers’ equations by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1146-1155.
    11. Arikoglu, Aytac & Ozkol, Ibrahim, 2007. "Solution of fractional differential equations by using differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1473-1481.
    12. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    13. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    14. Kateryna Marynets, 2021. "Successive Approximation Technique in the Study of a Nonlinear Fractional Boundary Value Problem," Mathematics, MDPI, vol. 9(7), pages 1-19, March.
    15. Yu, Jicheng & Feng, Yuqiang, 2024. "On the generalized time fractional reaction–diffusion equation: Lie symmetries, exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    16. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    17. Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.
    18. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    19. Tien, Wei-Chung & Chen, Cha’o-Kuang, 2009. "Adomian decomposition method by Legendre polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2093-2101.
    20. Marwan Abukhaled, 2013. "Variational Iteration Method for Nonlinear Singular Two-Point Boundary Value Problems Arising in Human Physiology," Journal of Mathematics, Hindawi, vol. 2013, pages 1-4, February.
    21. Yu, Yongguang & Li, Han-Xiong, 2008. "The synchronization of fractional-order Rössler hyperchaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1393-1403.
    22. Das, S., 2009. "A note on fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2074-2079.
    23. Gafiychuk, V. & Datsko, B. & Meleshko, V. & Blackmore, D., 2009. "Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1095-1104.
    24. W. K. Zahra & S. M. Elkholy, 2012. "The Use of Cubic Splines in the Numerical Solution of Fractional Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-16, August.
    25. Odibat, Zaid M., 2009. "Computational algorithms for computing the fractional derivatives of functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2013-2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    2. González-Olvera, Marcos A. & Tang, Yu, 2018. "Contraction analysis for fractional-order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 255-263.
    3. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    4. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    5. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.
    6. Xu, Lan, 2009. "The variational iteration method for fourth order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1386-1394.
    7. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    8. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    9. Huang, Xiuqi & Wang, Xiangjun, 2021. "Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    10. Radwan, A.G. & Soliman, A.M. & Elwakil, A.S. & Sedeek, A., 2009. "On the stability of linear systems with fractional-order elements," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2317-2328.
    11. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    12. Runlong Peng & Cuimei Jiang & Rongwei Guo, 2021. "Partial Anti-Synchronization of the Fractional-Order Chaotic Systems through Dynamic Feedback Control," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    13. Deshpande, Amey S. & Daftardar-Gejji, Varsha, 2017. "On disappearance of chaos in fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 119-126.
    14. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    15. Balootaki, Mohammad Ahmadi & Rahmani, Hossein & Moeinkhah, Hossein & Mohammadzadeh, Ardashir, 2020. "On the Synchronization and Stabilization of fractional-order chaotic systems: Recent advances and future perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    16. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    17. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    18. Chun, Changbum, 2007. "Integration using He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1130-1134.
    19. YuYan Bian & WenXin Yu, 2021. "A secure communication method based on 6-D hyperchaos and circuit implementation," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(4), pages 731-751, August.
    20. Chen, Yiming & Ke, Xiaohong & Wei, Yanqiao, 2015. "Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 475-488.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:5:p:1248-1255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.