IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i5p1119-1123.html
   My bibliography  Save this article

Application of He’s variational iteration method to Helmholtz equation

Author

Listed:
  • Momani, Shaher
  • Abuasad, Salah

Abstract

In this article, we implement a new analytical technique, He’s variational iteration method for solving the linear Helmholtz partial differential equation. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via the variational theory. The initial approximations can be freely chosen with possible unknown constants, which can be determined by imposing the boundary/initial conditions. The results compare well with those obtained by the Adomian’s decomposition method.

Suggested Citation

  • Momani, Shaher & Abuasad, Salah, 2006. "Application of He’s variational iteration method to Helmholtz equation," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1119-1123.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:5:p:1119-1123
    DOI: 10.1016/j.chaos.2005.04.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790500473X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatari, Mehdi & Dehghan, Mehdi, 2007. "He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 671-677.
    2. Xu, Lan, 2009. "The variational iteration method for fourth order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1386-1394.
    3. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    4. Marinca, Vasile & Herişanu, Nicolae, 2008. "Periodic solutions of Duffing equation with strong non-linearity," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 144-149.
    5. Tomar, Saurabh & Singh, Mehakpreet & Vajravelu, Kuppalapalle & Ramos, Higinio, 2023. "Simplifying the variational iteration method: A new approach to obtain the Lagrange multiplier," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 640-644.
    6. Gordoa, P.R., 2007. "A note on solutions of an equation modelling arterial deformation," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1505-1511.
    7. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    8. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    9. Chun, Changbum, 2007. "Integration using He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1130-1134.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:5:p:1119-1123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.