IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/638026.html
   My bibliography  Save this article

The Use of Cubic Splines in the Numerical Solution of Fractional Differential Equations

Author

Listed:
  • W. K. Zahra
  • S. M. Elkholy

Abstract

Fractional calculus became a vital tool in describing many phenomena appeared in physics, chemistry as well as engineering fields. Analytical solution of many applications, where the fractional differential equations appear, cannot be established. Therefore, cubic polynomial spline-function-based method combined with shooting method is considered to find approximate solution for a class of fractional boundary value problems (FBVPs). Convergence analysis of the method is considered. Some illustrative examples are presented.

Suggested Citation

  • W. K. Zahra & S. M. Elkholy, 2012. "The Use of Cubic Splines in the Numerical Solution of Fractional Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-16, August.
  • Handle: RePEc:hin:jijmms:638026
    DOI: 10.1155/2012/638026
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2012/638026.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2012/638026.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/638026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    2. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2009. "A note on the stability of fractional order systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1566-1576.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra, W.K. & Elkholy, S.M. & Fahmy, M., 2019. "Rational spline-nonstandard finite difference scheme for the solution of time-fractional Swift–Hohenberg equation," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 372-387.
    2. Fathy, Mohamed & Abdelgaber, K.M., 2022. "Approximate solutions for the fractional order quadratic Riccati and Bagley-Torvik differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Hou, Jie & Ma, Zhiying & Ying, Shihui & Li, Ying, 2024. "HNS: An efficient hermite neural solver for solving time-fractional partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Waseem, Waseem & Sulaiman, M. & Aljohani, Abdulah Jeza, 2020. "Investigation of fractional models of damping material by a neuroevolutionary approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Xu, Lan, 2009. "The variational iteration method for fourth order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1386-1394.
    3. Roman Parovik, 2020. "Mathematical Modeling of Linear Fractional Oscillators," Mathematics, MDPI, vol. 8(11), pages 1-26, October.
    4. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    6. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    7. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2018. "Applications of Lyapunov Functions to Caputo Fractional Differential Equations," Mathematics, MDPI, vol. 6(11), pages 1-17, October.
    8. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    9. Marwan Abukhaled, 2013. "Variational Iteration Method for Nonlinear Singular Two-Point Boundary Value Problems Arising in Human Physiology," Journal of Mathematics, Hindawi, vol. 2013, pages 1-4, February.
    10. Zhang, Zhe & Zhang, Jing & Ai, Zhaoyang & Cheng, FanYong & Liu, Feng, 2020. "A novel general stability criterion of time-delay fractional-order nonlinear systems based on WILL Deduction Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 328-344.
    11. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    12. Soliman, A.A., 2009. "On the solution of two-dimensional coupled Burgers’ equations by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1146-1155.
    13. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    14. Munoz-Pacheco, J.M. & Zambrano-Serrano, E. & Volos, Ch. & Tacha, O.I. & Stouboulos, I.N. & Pham, V.-T., 2018. "A fractional order chaotic system with a 3D grid of variable attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 69-78.
    15. Chen, Yiming & Ke, Xiaohong & Wei, Yanqiao, 2015. "Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 475-488.
    16. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    17. Tomar, Saurabh & Singh, Mehakpreet & Vajravelu, Kuppalapalle & Ramos, Higinio, 2023. "Simplifying the variational iteration method: A new approach to obtain the Lagrange multiplier," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 640-644.
    18. Zhang, Xuefeng & Chen, Shunan & Zhang, Jin-Xi, 2022. "Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    19. Yu, Yongguang & Li, Han-Xiong, 2008. "The synchronization of fractional-order Rössler hyperchaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1393-1403.
    20. Kateryna Marynets, 2021. "Successive Approximation Technique in the Study of a Nonlinear Fractional Boundary Value Problem," Mathematics, MDPI, vol. 9(7), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:638026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.