IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v24y2005i4p941-946.html
   My bibliography  Save this article

Deriving the essential features of the standard model from the general theory of relativity

Author

Listed:
  • Naschie, M.S.El

Abstract

The essay gives plausibility arguments for deriving the number of elementary particles of the standard model from general relativity and maximally symmetric spaces.

Suggested Citation

  • Naschie, M.S.El, 2005. "Deriving the essential features of the standard model from the general theory of relativity," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 941-946.
  • Handle: RePEc:eee:chsofr:v:24:y:2005:i:4:p:941-946
    DOI: 10.1016/j.chaos.2004.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904006514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek-Crnjac, L., 2008. "The connection between the electromagnetic fine structure constant α¯0 and the monster Lie algebra," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 257-262.
    2. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    3. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    4. Marek-Crnjac, L., 2008. "Exceptional and semi simple Lie groups hierarchies and the maximum number of elementary particles beyond the standard model of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 1-5.
    5. Falcon, Sergio & Plaza, Ángel, 2009. "k-Fibonacci sequences modulo m," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 497-504.
    6. Kubra Gul, 2019. "On Bi-periodic Jacobsthal and Jacobsthal-Lucas Quaternions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(2), pages 44-52, April.
    7. Caccese, E. & Guarracino, F., 2006. "On the “relativistic” description of motion of soliton-like defects in elastic media," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 868-880.
    8. Marek-Crnjac, L., 2009. "The number of elementary particles in the standard model from purely number theoretical considerations," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1587-1589.
    9. Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
    10. Marek-Crnjac, L., 2007. "The fundamental coupling constants of physics in connection with the dimension of the special orthogonal and unitary groups," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1382-1386.
    11. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    12. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    13. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    14. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:24:y:2005:i:4:p:941-946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.