IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i1p223-231.html
   My bibliography  Save this article

Periodic oscillatory solution in delayed competitive–cooperative neural networks: A decomposition approach

Author

Listed:
  • Yuan, Kun
  • Cao, Jinde

Abstract

In this paper, the problems of exponential convergence and the exponential stability of the periodic solution for a general class of non-autonomous competitive–cooperative neural networks are analyzed via the decomposition approach. The idea is to divide the connection weights into inhibitory or excitatory types and thereby to embed a competitive–cooperative delayed neural network into an augmented cooperative delay system through a symmetric transformation. Some simple necessary and sufficient conditions are derived to ensure the componentwise exponential convergence and the exponential stability of the periodic solution of the considered neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice.

Suggested Citation

  • Yuan, Kun & Cao, Jinde, 2006. "Periodic oscillatory solution in delayed competitive–cooperative neural networks: A decomposition approach," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 223-231.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:223-231
    DOI: 10.1016/j.chaos.2005.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790500319X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jinde & Ho, Daniel W.C., 2005. "A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1317-1329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jitao & Wang, Qing-Guo & Gao, Hanqiao, 2009. "Periodic solution for nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1423-1427.
    2. Mak, K.L. & Peng, J.G. & Xu, Z.B. & Yiu, K.F.C., 2007. "A new stability criterion for discrete-time neural networks: Nonlinear spectral radius," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 424-436.
    3. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    2. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    3. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    4. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    5. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    6. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    7. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    8. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    9. Wang, Kai & Teng, Zhidong & Jiang, Haijun, 2008. "Adaptive synchronization of neural networks with time-varying delay and distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 631-642.
    10. Singh, Vimal, 2007. "Improved global robust stability criterion for delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 224-229.
    11. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    12. Singh, Vimal, 2007. "Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 259-263.
    13. Wang, Zidong & Shu, Huisheng & Liu, Yurong & Ho, Daniel W.C. & Liu, Xiaohui, 2006. "Robust stability analysis of generalized neural networks with discrete and distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 886-896.
    14. Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
    15. Singh, Vimal, 2007. "LMI approach to the global robust stability of a larger class of neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1927-1934.
    16. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
    17. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    18. Singh, Vimal, 2006. "Simplified LMI condition for global asymptotic stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 470-473.
    19. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    20. Singh, Vimal, 2006. "New global robust stability results for delayed cellular neural networks based on norm-bounded uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1165-1171.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:223-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.