IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip2s0960077923009487.html
   My bibliography  Save this article

Design of intelligent hybrid NAR-GRNN paradigm for fractional order VDP chaotic system in cardiac pacemaker with relaxation oscillator

Author

Listed:
  • Bukhari, Ayaz Hussain
  • Raja, Muhammad Asif Zahoor
  • Alquhayz, Hani
  • Abdalla, Manal Z.M.
  • Alhagyan, Mohammed
  • Gargouri, Ameni
  • Shoaib, Muhammad

Abstract

Managing cardiac disease and abnormal heart rate variability is a challenging problem with its psychological impact on lifesaving intervention. The research presents a novel machine learning approach to paradigm dynamic pacemaker design based on fractional order modified Van der Pol oscillator system implemented to generate rich non-sinusoidal signals for cardiac intervention and treatment. The physical framework of the novel contribution comprises Sino-Atrial (SA) and Atrio-Ventricular (AV) nodes, designed to utilize fractional order excitation signals derived from the VDP dynamic system. Hybrid paradigm is designed by integrating the dynamical nonlinear autoregressive (NAR) neural networks and generalized regression neural networks (GRNNs) to analyze the parametric fractal impulse model for cardiac muscle. The chaotic pattern of the proposed nonlinear system is explored in terms of phase portraits and Lyapunov exponents. The exceptional performance of the cutting-edge fractional order multimodal computing paradigm is validated by achieving an RMSE of 0.1E-14. The dynamic chaotic and fractal trajectory of relaxation oscillator based on its computed control parameters can provide valuable insight to design robust and efficient electronic implantable cardioverter defibrillators (ICDs) as pacemakers to stabilize cardiac impulse variability and alleviate healthcare burden as compared to traditional cardiac rehabilitation procedures.

Suggested Citation

  • Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Alquhayz, Hani & Abdalla, Manal Z.M. & Alhagyan, Mohammed & Gargouri, Ameni & Shoaib, Muhammad, 2023. "Design of intelligent hybrid NAR-GRNN paradigm for fractional order VDP chaotic system in cardiac pacemaker with relaxation oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009487
    DOI: 10.1016/j.chaos.2023.114047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Deka, Bhabesh & Deka, Dipen, 2022. "An improved multiscale distribution entropy for analyzing complexity of real-world signals," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. El-Dib, Yusry O. & Elgazery, Nasser S., 2022. "A novel pattern in a class of fractal models with the non-perturbative approach," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. da Silva, Sidney T. & de Godoy, Moacir F. & Gregório, Michele L. & Viana, Ricardo L. & Batista, Antonio M., 2023. "Analysis of heartbeat time series via machine learning for detection of illnesses," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    6. Luís P. Castro & Anabela S. Silva, 2023. "On the Existence and Stability of Solutions for a Class of Fractional Riemann–Liouville Initial Value Problems," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    7. Xu, Changjin & Farman, Muhammad & Akgül, Ali & Nisar, Kottakkaran Sooppy & Ahmad, Aqeel, 2022. "Modeling and analysis fractal order cancer model with effects of chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Lei, Yong & Xu, Xin-Jian & Wang, Xiaofan & Zou, Yong & Kurths, Jürgen, 2023. "A new criterion for optimizing synchrony of coupled oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Xiaoyu Li & Yu-Lan Wang, 2022. "Numerical Simulation Of The Fractional-Order Rã–Ssler Chaotic Systems With Grãœnwald–Letnikov Fractional Derivative," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(08), pages 1-8, December.
    11. Rujira Ouncharoen & Kamal Shah & Rahim Ud Din & Thabet Abdeljawad & Ali Ahmadian & Soheil Salahshour & Thanin Sitthiwirattham, 2023. "Study Of Integer And Fractional Order Covid-19 Mathematical Model," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(04), pages 1-13.
    12. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Rafiq, Naila & Shoaib, Muhammad & Kiani, Adiqa Kausar & Shu, Chi-Min, 2022. "Design of intelligent computing networks for nonlinear chaotic fractional Rossler system," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Gzal, M. & Kislovsky, V. & Hasan, M.A. & Starosvetsky, Y., 2023. "Analysis of the response of damped and parametrically driven, strongly anharmonic Klein-Gordon chain - Part 1: Phase locked traveling breathers," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Luo, Shaohua & Yang, Guanci & Li, Junyang & Ouakad, Hassen M., 2022. "Dynamic analysis, circuit realization and accelerated adaptive backstepping control of the FO MEMS gyroscope," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Templos-Hernández, Diana J. & Quezada-Téllez, Luis A. & González-Hernández, Brian M. & Rojas-Vite, Gerardo & Pineda-Sánchez, José E. & Fernández-Anaya, Guillermo & Rodriguez-Torres, Erika E., 2021. "A fractional-order approach to cardiac rhythm analysis," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    17. Grudziński, Krzysztof & Żebrowski, Jan J, 2004. "Modeling cardiac pacemakers with relaxation oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 153-162.
    18. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anwar, Nabeela & Ahmad, Iftikhar & Kiani, Adiqa Kausar & Shoaib, Muhammad & Raja, Muhammad Asif Zahoor, 2024. "Novel intelligent predictive networks for analysis of chaos in stochastic differential SIS epidemic model with vaccination impact," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 251-283.
    2. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Jiang, Wei & Chen, Zhong & Hu, Ning & Song, Haiyang & Yang, Zhaohong, 2020. "Multi-scale orthogonal basis method for nonlinear fractional equations with fractional integral boundary value conditions," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    4. Shahram Rezapour & Sina Etemad & Ravi P. Agarwal & Kamsing Nonlaopon, 2022. "On a Lyapunov-Type Inequality for Control of a ψ -Model Thermostat and the Existence of Its Solutions," Mathematics, MDPI, vol. 10(21), pages 1-11, October.
    5. Xiaoyang Zheng & Shiyu Liu & Zejiang Yu & Chengyou Luo, 2023. "A New Method for Dynamical System Identification by Optimizing the Control Parameters of Legendre Multiwavelet Neural Network," Mathematics, MDPI, vol. 11(24), pages 1-26, December.
    6. Gois, Sandra R.F.S.M. & Savi, Marcelo A., 2009. "An analysis of heart rhythm dynamics using a three-coupled oscillator model," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2553-2565.
    7. Yoshioka, Hidekazu & Yoshioka, Yumi, 2024. "Assessing fluctuations of long-memory environmental variables based on the robustified dynamic Orlicz risk," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Fouego, Dorota Youmbi & Dongmo, Eric Donald & Woafo, Paul, 2021. "Voltages responses and synchronization of an array of Grudzinski and Zebrowski oscillators coupled to an electrical load," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Shoji, Isao & Nozawa, Masahiro, 2022. "Geometric analysis of nonlinear dynamics in application to financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Andrade, Dana I. & Specchia, Stefania & Fuziki, Maria E.K. & Oliveira, Jessica R.P. & Tusset, Angelo M. & Lenzi, Giane G., 2024. "Dynamic analysis and SDRE control applied in a mutating autocatalyst with chaotic behavior," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Hamzeh Zureigat & Mohammed Al-Smadi & Areen Al-Khateeb & Shrideh Al-Omari & Sharifah Alhazmi, 2023. "Numerical Solution for Fuzzy Time-Fractional Cancer Tumor Model with a Time-Dependent Net Killing Rate of Cancer Cells," IJERPH, MDPI, vol. 20(4), pages 1-13, February.
    13. Isao Shoji & Masahiro Nozawa, 2020. "A geometric analysis of nonlinear dynamics and its application to financial time series," Papers 2012.11825, arXiv.org.
    14. Flavia Matias Oliveira Silva & Eduardo Carlos Alexandrina & Ana Cristina Pardal & Maria Teresa Carvalhos & Elaine Schornobay Lui, 2022. "Monitoring and Prediction of Particulate Matter (PM 2.5 and PM 10 ) around the Ipbeja Campus," Sustainability, MDPI, vol. 14(24), pages 1-9, December.
    15. Acosta, A. & Gallo, R. & García, P. & Peluffo-Ordóñez, D., 2023. "Positive invariant regions for a modified Van Der Pol equation modeling heart action," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    16. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Jun-Juh Yan & Hang-Hong Kuo, 2022. "Adaptive Memoryless Sliding Mode Control of Uncertain Rössler Systems with Unknown Time Delays," Mathematics, MDPI, vol. 10(11), pages 1-13, May.
    18. Khalili Golmankhaneh, Alireza & Tejado, Inés & Sevli, Hamdullah & Valdés, Juan E. Nápoles, 2023. "On initial value problems of fractal delay equations," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    19. Asher Yahalom & Natalia Puzanov, 2024. "Feedback Stabilization Applied to Heart Rhythm Dynamics Using an Integro-Differential Method," Mathematics, MDPI, vol. 12(1), pages 1-14, January.
    20. Lounis, Fatima & Boukabou, Abdelkrim & Soukkou, Ammar, 2020. "Implementing high-order chaos control scheme for cardiac conduction model with pathological rhythms," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.