IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011931.html
   My bibliography  Save this article

Optimal compactness of fractional Fourier domain characterizes frequency modulated signals

Author

Listed:
  • Ugarte, Juan P.
  • Gómez-Echavarría, Alejandro
  • Tobón, Catalina

Abstract

The Fourier transform (FT) is a mathematical tool widely used in signal processing applications; however, it presents limitations when dealing with non-stationary time series. By considering the fractional powers of the FT operator, a generalized version is obtained known as the fractional FT. This transformation allows free rotations of the time–frequency plane that can be exploited for processing frequency modulated signals. This work addresses the problem of characterizing noisy, multicomponent, and non-linear frequency modulated signals through a proper order of the fractional FT, whose kernel consists of a chirp with linear frequency modulation. The estimation of the optimal fractional FT order obeys a strategy that includes the quantification of the compactness of fractional Fourier domains and the search for the order that leads to the most compact domain. For this purpose, five compactness measures are assessed in combination with four different optimization algorithms. Numerical experiments are performed on synthetic signals, generated under distinct frequency modulation conditions, and on real acoustic signals. The results reveal that the spectral second moment and the spectral entropy provide robust and reliable measures of the compactness of the fractional Fourier domain. These metrics enable an effective computation of the optimal fractional order that describes the frequency modulation content of the underlying signal. The optimization algorithms assessed in this study yield similar estimations of the optimal fractional order, yet the coarse-to-fine algorithm is more efficient in terms of computation time, followed by the particle swarm optimization algorithm. Moreover, it is verified that the strategy can be adopted for extracting dynamical information of the frequency modulation content from synthetic signals with multiple linear and non-linear components and from real acoustic data, e.g., bat and bird recordings. The extensive assessment of the signal processing strategy based on the fractional FT outlined in this work provides relevant information for exploring further applications with time series captured when studying complex and non-stationary processes, such as biological, medical, or economic systems.

Suggested Citation

  • Ugarte, Juan P. & Gómez-Echavarría, Alejandro & Tobón, Catalina, 2023. "Optimal compactness of fractional Fourier domain characterizes frequency modulated signals," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011931
    DOI: 10.1016/j.chaos.2023.114291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ugarte, Juan P. & Tenreiro Machado, J.A. & Tobón, Catalina, 2022. "Fractional generalization of entropy improves the characterization of rotors in simulated atrial fibrillation," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011931. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.