IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009056.html
   My bibliography  Save this article

Qualitative analysis and new variety of solitons profiles for the (1+1)-dimensional modified equal width equation

Author

Listed:
  • Shah, Syed Asif Ali
  • Hussain, Ejaz
  • Ma, Wen-Xiu
  • Li, Zhao
  • Ragab, Adham E.
  • Khalaf, Tamer M.

Abstract

The objective of this manuscript is to examine the nonlinear characteristics of the modified equal width equation that is used to simulate the one-dimensional wave propagation nonlinear media, incorporating the dispersion process. Utilizing the traveling wave transformations, we are able to convert the nonlinear partial differential equations (NLPDES) into ordinary differential equations (NLODEs). In this study, an analytical technique is used to utilize the exact soliton solutions of this proposed model. This efficient method is known as the modified auxiliary equation method. This extraction of soliton solutions contains various types of solutions such as trigonometric, hyperbolic, and rational solutions. For a graphical representation, we utilize Mathematica and Maple software to depict the solutions in 3D, 2D, contour plots, and density plots. The main novelty of this paper is to explore the qualitative study, which includes the chaotic behavior, bifurcation, sensitivity, and stability analysis of this problem. For this, first, we apply the Galilean transformation, we convert the NLODEs into two systems of equations. Moreover, the qualitative dynamics of the time-varying dynamical system are examined by employing chaos theory. We explore the intricacies of 3D and 2D phase portraits, time series, and Poincaré maps as powerful tools for detecting the elusive nature of chaos in self-governing dynamic systems. Sensitivity and stability analysis is also studied by using the various initial conditions, revealing the remarkable stability of the system under investigation. The system’s stability is confirmed by the fact that even small changes to the initial conditions have no appreciable effect on the solutions. The results of this study are novel and valuable for further investigation of equations which are helpful for the incoming researchers.

Suggested Citation

  • Shah, Syed Asif Ali & Hussain, Ejaz & Ma, Wen-Xiu & Li, Zhao & Ragab, Adham E. & Khalaf, Tamer M., 2024. "Qualitative analysis and new variety of solitons profiles for the (1+1)-dimensional modified equal width equation," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009056
    DOI: 10.1016/j.chaos.2024.115353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Wen-Xiu, 2021. "N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 270-279.
    2. Ma, Wen-Xiu, 2024. "Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Tang, Lu, 2022. "Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Melike Kaplan & Arzu Akbulut & Barbara Martinucci, 2022. "A Mathematical Analysis of a Model Involving an Integrable Equation for Wave Packet Envelope," Journal of Mathematics, Hindawi, vol. 2022, pages 1-10, February.
    5. Attaullah & Muhammad Shakeel & Nehad Ali Shah & Jae Dong Chung, 2022. "Modified Exp-Function Method to Find Exact Solutions of Ionic Currents along Microtubules," Mathematics, MDPI, vol. 10(6), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasreen, Naila & Yadav, Ankit & Malik, Sandeep & Hussain, Ejaz & Alsubaie, Abdullah Saad & Alsharif, Faisal, 2024. "Phase trajectories, chaotic behavior, and solitary wave solutions for (3+1)-dimensional integrable Kadomtsev–Petviashvili equation in fluid dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil, 2023. "Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Cui, Xiao-Qi & Wen, Xiao-Yong & Li, Zai-Dong, 2024. "Magnetization reversal phenomenon of higher-order lump and mixed interaction structures on periodic background in the (2+1)-dimensional Heisenberg ferromagnet spin equation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Sudao Bilige & Leilei Cui & Xiaomin Wang, 2023. "Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation," Mathematics, MDPI, vol. 11(8), pages 1-12, April.
    4. Lü, Xing & Chen, Si-Jia, 2023. "N-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Kuo, Chun-Ku, 2021. "A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-dimensional Kudryashov–Sinelshchikov equation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Han, Peng-Fei & Zhang, Yi, 2024. "Investigation of shallow water waves near the coast or in lake environments via the KdV–Calogero–Bogoyavlenskii–Schiff equation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    8. Wen-Xiu Ma, 2022. "Riemann–Hilbert Problems and Soliton Solutions of Type ( λ ∗ , − λ ∗ ) Reduced Nonlocal Integrable mKdV Hierarchies," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    9. Xu, Yuanqing & Zheng, Xiaoxiao & Xin, Jie, 2022. "New non-traveling wave solutions for the (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. Jhangeer, Adil & Beenish,, 2024. "Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    11. Han, Tianyong & Li, Zhao & Li, Chenyu, 2023. "Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    12. Gu, Yongyi & Peng, Liudi & Huang, Zhishang & Lai, Yongkang, 2024. "Soliton, breather, lump, interaction solutions and chaotic behavior for the (2+1)-dimensional KPSKR equation," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    13. Ma, Wen-Xiu, 2024. "An extended AKNS eigenvalue problem and its affiliated integrable Hamiltonian hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    14. Sugati, Taghreed G. & Seadawy, Aly R. & Alharbey, R.A. & Albarakati, W., 2022. "Nonlinear physical complex hirota dynamical system: Construction of chirp free optical dromions and numerical wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Liu, Shao-Hua & Tian, Bo & Gao, Xiao-Tian, 2024. "Generalized (n,N−n)-fold Darboux transformation and localized waves for an integrable reduced spin Hirota-Maxwell-Bloch system in an erbium doped fiber," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    16. Rao, Jiguang & Mihalache, Dumitru & Zhou, Fang & He, Jingsong & Chen, Sheng-An, 2024. "Dark and antidark solitons on continuous and doubly periodic backgrounds in the space-shifted nonlocal nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Yu, Weitian & Luan, Zitong & Zhang, Hongxin & Liu, Wenjun, 2022. "Collisions of three higher order dark double- and single-hump solitons in optical fiber," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.